Let \( A, B, C \) be points on a line.
\( A = (x_1, y_1, z_1) \)
\( B = (x_1 + 4kl, y_1 + 4km, z_1 + 4kn) \)
\( C = (x_1 + kl, y_1 + km, z_1 + kn) \)
Let \( B \) divide \( AC \) in the ratio \( \lambda : 1 \).
Using the section formula for the x-coordinate: \[ x_B = \frac{\lambda x_C + 1 x_A}{\lambda + 1} \] \[ x_1 + 4kl = \frac{\lambda (x_1 + kl) + 1 (x_1)}{\lambda + 1} \] \[ (\lambda + 1)(x_1 + 4kl) = \lambda x_1 + \lambda kl + x_1 \] \[ \lambda x_1 + 4\lambda kl + x_1 + 4kl = \lambda x_1 + \lambda kl + x_1 \] Subtract \( \lambda x_1 + x_1 \) from both sides: \[ 4\lambda kl + 4kl = \lambda kl \] Since \( k > 0 \) and \( l, m, n \) are direction cosines (not all zero), we can assume \( kl \neq 0 \) (unless \( l = 0 \), but the formula must hold for \( y \) and \( z \) coordinates too).
If \( kl \neq 0 \), divide by \( kl \): \[ 4\lambda + 4 = \lambda \] \[ 3\lambda = -4 \] \[ \lambda = -\frac{4}{3} \] The ratio \( \lambda : 1 \) is \( -\frac{4}{3} : 1 \), which is equivalent to \( -4 : 3 \).
A negative ratio means \( B \) divides \( AC \) externally.
If the ratio is taken as \( m : n \), then \( \frac{m}{n} = -\frac{4}{3} \).
This can be written as \( m = 4, n = -3 \) or \( m = -4, n = 3 \).
The option \( 4 : -3 \) corresponds to \( m = 4, n = -3 \).
This means \( B \) divides \( AC \) externally in the ratio 4:3, and \( C \) is between \( A \) and \( B \).
Let's check the distances.
Distance \( AB = \sqrt{((x_1 + 4kl) - x_1)^2 + \dots} = \sqrt{(4kl)^2 + (4km)^2 + (4kn)^2} = \sqrt{16k^2(l^2 + m^2 + n^2)} = \sqrt{16k^2(1)} = 4k \) (since \( k > 0 \)).
Distance \( AC = \sqrt{((x_1 + kl) - x_1)^2 + \dots} = \sqrt{(kl)^2 + (km)^2 + (kn)^2} = \sqrt{k^2(l^2 + m^2 + n^2)} = \sqrt{k^2(1)} = k \).
The points are ordered \( A, C, B \) along the line if \( k > 0 \).
\( A \) is the origin, \( C \) is at distance \( k \), \( B \) is at distance \( 4k \).
\( A \)-------\( C \)---\( B \)
\( AC = k, CB = 3k \).
\( B \) divides \( AC \) externally.
Ratio \( AB / BC \).
This would be \( \frac{4k}{-3k} = -\frac{4}{3} \).
The ratio in which \( B \) divides segment \( AC \) is given by \( \frac{\vec{AB}}{\vec{BC}} \).
\( \vec{AC} = (kl, km, kn) \). \( \vec{AB} = (4kl, 4km, 4kn) = 4 \vec{AC} \).
So \( B \) is such that \( \vec{OB} = \vec{OA} + 4(\vec{OC} - \vec{OA}) \).
This is not right.
Positions relative to \( A \): \( A \) is at 0.
\( C \) is at \( k \).
\( B \) is at \( 4k \).
Let \( B \) divide \( AC \) in ratio \( m : n \).
\( B \) is \( \frac{mC + nA}{m+n} \).
Coordinates of \( B \) relative to \( A \): \( (4k) \).
Coordinates of \( C \) relative to \( A \): \( (k) \).
\[ 4k = \frac{m(k) + n(0)}{m+n} \implies 4k(m+n) = mk \] \[ 4(m+n) = m \implies 4m + 4n = m \implies 3m = -4n \implies \frac{m}{n} = -\frac{4}{3} \] So the ratio is \( -4 : 3 \).
Option \( 4 : -3 \) represents \( m = 4, n = -3 \) or \( m = -4, n = 3 \).
Option (3) is \( 4 : -3 \).
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?
