Step 1: Understanding the Concept:
The projection of a vector \( \vec{a} \) onto another vector \( \vec{b} \) is the scalar length of the component of \( \vec{a} \) that lies in the direction of \( \vec{b} \).
Step 2: Key Formula or Approach:
The formula for the scalar projection of vector \( \vec{a} \) on vector \( \vec{b} \) is given by:
\[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \]
We need to compute the dot product \( \vec{a} \cdot \vec{b} \) and the magnitude of \( \vec{b} \).
Step 3: Detailed Explanation:
Given vectors are:
\[ \vec{a} = 2\hat{i} + 3\hat{j} + 5\hat{k} \]
\[ \vec{b} = \hat{i} + 3\hat{j} + \hat{k} \]
First, calculate the dot product \( \vec{a} \cdot \vec{b} \):
\[ \vec{a} \cdot \vec{b} = (2)(1) + (3)(3) + (5)(1) \]
\[ \vec{a} \cdot \vec{b} = 2 + 9 + 5 = 16 \]
Next, calculate the magnitude of \( \vec{b} \):
\[ |\vec{b}| = \sqrt{(1)^2 + (3)^2 + (1)^2} \]
\[ |\vec{b}| = \sqrt{1 + 9 + 1} = \sqrt{11} \]
Now, substitute these values into the projection formula:
\[ \text{Projection} = \frac{16}{\sqrt{11}} \]
Step 4: Final Answer:
The projection of the vector \( \vec{a} \) on the vector \( \vec{b} \) is \( \frac{16}{\sqrt{11}} \).