Step 1: Assigning Oxidation States
- Iodide ion \( I^- \) is oxidized to iodine \( I_2 \).
- Manganate ion \( MnO_4^- \) is reduced to \( Mn^{2+} \).
- \( H^+ \) ions balance the charge and form water (\( H_2O \)).
Step 2: Writing the Half-Reactions
Oxidation Half-Reaction (Iodine Ion):
\[
2I^- \rightarrow I_2 + 2e^-
\]
Reduction Half-Reaction (Permanganate Ion):
\[
MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O
\]
Step 3: Balancing Electrons
- Multiply the oxidation reaction by 5 and the reduction reaction by 2 to balance the electrons:
\[
10I^- \rightarrow 5I_2 + 10e^-
\]
\[
2MnO_4^- + 16H^+ + 10e^- \rightarrow 2Mn^{2+} + 8H_2O
\]
Step 4: Writing the Overall Balanced Equation
\[
10I^- + 2MnO_4^- + 16H^+ \rightarrow 5I_2 + 2Mn^{2+} + 8H_2O
\]
Step 5: Verifying the Given Ratios
- (i) \( y : x = 2 : 5 \)
- \( y = 2 \) (MnO\(_4^-\)) and \( x = 10 \) (I\(^-\)), so the ratio simplifies to 2:5.
- (ii) \( y : a = 1 : 1 \)
- \( y = 2 \) and \( a = 2 \), so the ratio is 1:1.
- (iii) \( x : c = 1 : 2 \)
- Given equation shows \( x = 10 \) and \( c = 5 \), so the ratio is 10:5 = 2:1, not 1:2.
- (iv) \( y : e = 2 : 5 \)
- \( y = 2 \) (MnO\(_4^-\)) and \( e = 5 \) (I\(_2\)), so the ratio is 2:5.
Step 6: Conclusion
Since (i), (ii), and (iv) are correct, the correct answer is option (3).