Step 1: General formula.
The gas formation volume factor is defined as:
\[
B_g = \frac{V_g \text{ at reservoir conditions}}{V_g \text{ at standard conditions}}.
\]
In petroleum engineering units:
\[
B_g = 0.02827 \, \frac{zT}{p}
\]
where,
- \(T\) = absolute temperature in Rankine,
- \(p\) = pressure in psia,
- \(z\) = gas compressibility factor.
Step 2: Substitution of given values.
\[
T = 560^\circ R, \quad p = 200 \, \text{psia}, \quad z = 0.8
\]
\[
B_g = 0.02827 \times \frac{0.8 \times 560}{200}
\]
Step 3: Simplification.
\[
0.8 \times 560 = 448
\]
\[
\frac{448}{200} = 2.24
\]
\[
B_g = 0.02827 \times 2.24 = 0.0633 \, \text{ft}^3/\text{scf}
\]
Step 4: Express in \(10^{-2}\).
\[
0.0633 = 6.33 \times 10^{-2} \, \text{ft}^3/\text{scf}
\]
Wait – let's check carefully with units again:
Step 5: Verification.
Formula often used:
\[
B_g = \frac{0.02827 \, z T}{p}
\]
Substitute:
\[
= \frac{0.02827 \times 0.8 \times 560}{200}
= \frac{12.68}{200}
= 0.0634 \, \text{ft}^3/\text{scf}.
\]
\[
\Rightarrow B_g = 6.3 \times 10^{-2} \, \text{ft}^3/\text{scf}.
\]
Final Answer:
\[
\boxed{6.3 \times 10^{-2} \, \text{ft}^3/\text{scf}}
\]