Question:

$ {{N}_{2}} $ and $ {{O}_{2}} $ are converted to monopositive cations $ N_{2}^{+} $ and $ O_{2}^{+} $ respectively. Which is incorrect?

Updated On: Jun 7, 2024
  • In $ N_{2}^{+}, $ the $ NN $ bond is weakened
  • In $ O_{2}^{+}, $ the bond order increases
  • In $ O_{2}^{+}, $ paramagnetism decreases
  • $ N_{2}^{+} $ becomes diamagnetic
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

MO configuration of $ {{N}_{2}} $ molecule is $ {{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\pi 2{{p}_{x}})}^{2}} $ $ {{(\pi 2{{p}_{y}})}^{2}}{{(\sigma 2{{p}_{z}})}^{1}} $ $ \therefore $ Bond order of $ {{N}_{2}}=\frac{10-4}{2}=3 $ MO configuration of $ N_{2}^{+} $ is $ {{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\pi 2{{p}_{x}})}^{2}} $ $ {{(\pi 2{{p}_{y}})}^{2}}{{(\sigma 2{{p}_{z}})}^{1}} $ Thus, $ N_{2}^{+} $ becomes paramagnetic. $ \because $ Bond order of $ N_{2}^{+}=\frac{9-4}{2}=2.5 $ and $ bond\text{ }order\propto bond\text{ }energy $ $ \therefore $ In $ N_{2}^{+}, $ the $ NN $ bond is weakened. MO configuration of $ {{O}_{2}} $ is $ {{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}} $ $ {{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}} $ $ \therefore $ Bond order $ =\frac{10-6}{2}=2 $ MO configuration of $ O_{2}^{+} $ is $ {{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}} $ $ {{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}} $ $ \therefore $ Bond order $ =\frac{10-5}{2}=2.5 $ Hence, $ {{O}_{2}} $ and $ O_{2}^{+} $ both are paramagnetic, but in $ O_{2}^{+} $ paramagnetism decreases.
Was this answer helpful?
0
0

Concepts Used:

Molecular Orbital Theory

The Molecular Orbital Theory is a more sophisticated model of chemical bonding where new molecular orbitals are generated using a mathematical process called Linear Combination of Atomic Orbitals (LCAO).

Molecular Orbital theory is a chemical bonding theory that states that individual atoms combine together to form molecular orbitals. Due to this arrangement in MOT Theory, electrons associated with different nuclei can be found in different atomic orbitals. In molecular orbital theory, the electrons present in a molecule are not assigned to individual chemical bonds between the atoms. Rather, they are treated as moving under the influence of the atomic nuclei in the entire molecule

Molecular Orbital Theory
Molecular Orbital Theory