Step 1: Find corner points of the feasible region. - Intersection of $4x+y=80$ and $x+5y=115$: \[ 4x+y=80 $\Rightarrow$ y=80-4x \] Substitute in $x+5y=115$: \[ x+5(80-4x)=115 \;\; $\Rightarrow$ \;\; x+400-20x=115 \;\; $\Rightarrow$ \;\; -19x=-285 \;\; $\Rightarrow$ \;\; x=15, \; y=20. \] - Intersection of $4x+y=80$ and $3x+2y=150$: \[ y=80-4x, 3x+2(80-4x)=150 \;\; $\Rightarrow$ \;\; 3x+160-8x=150 \] \[ -5x=-10 \;\; $\Rightarrow$ \;\; x=2, \; y=72. \] - Intersection of $x+5y=115$ and $3x+2y=150$: \[ x=115-5y, 3(115-5y)+2y=150 \] \[ 345-15y+2y=150 \;\; $\Rightarrow$ \;\; -13y=-195 \;\; $\Rightarrow$ \;\; y=15, \; x=40. \]
Step 2: Evaluate objective function $Z=6x+3y$ at corner points. - At $(15,20)$: $Z=6(15)+3(20)=90+60=150$ - At $(2,72)$: $Z=6(2)+3(72)=12+216=228$ - At $(40,15)$: $Z=6(40)+3(15)=240+45=285$
Step 3: Find minimum. The minimum value is \[ Z_{\min} = 150 \text{at} \; (15,20). \]
Final Answer: \[ \boxed{Z_{\min}=150 \; \text{at} \; (15,20)} \]
Arrange the following steps for solving Simplex linear programming problems in the correct order: