We are given the objective function:
\[
Z = 3x + 4y
\]
Subject to the constraints:
\[
x + y \leq 1, \quad x \geq 0, \quad y \geq 0
\]
These constraints define a feasible region in the first quadrant bounded by the line \(x + y = 1\), the \(x\)-axis and the \(y\)-axis.
Let us identify the corner points (vertices) of the feasible region:
1. When \(x = 0\):
\[
x + y = 1 \Rightarrow y = 1 \Rightarrow (0, 1)
\]
2. When \(y = 0\):
\[
x + y = 1 \Rightarrow x = 1 \Rightarrow (1, 0)
\]
3. Intersection of \(x = 0\) and \(y = 0\):
\((0, 0)\)
So, the corner points are:
\[
(0,0),\ (1,0),\ (0,1)
\]
Now, evaluate \(Z = 3x + 4y\) at each vertex:
- At \((0,0)\): \(Z = 3(0) + 4(0) = 0\)
- At \((1,0)\): \(Z = 3(1) + 4(0) = 3\)
- At \((0,1)\): \(Z = 3(0) + 4(1) = 4\)
Maximum value of \(Z\) is:
\[
\boxed{4 \text{ at } (0,1)}
\]