Minimise $Z=\displaystyle\sum_{j=1}^{n} \displaystyle\sum_{i=1}^{m} c_{i j} \cdot x_{i j}$
Subject to $\displaystyle\sum_{ i =1}^{ m } x _{ ij }= b _{ j }, j =1,2, \ldots \ldots n$$\displaystyle\sum_{j=1}^{n} x_{i j}=b_{j}, j=1,2, \ldots \ldots, m$ is a LPP with number of constraints
Constraints will be $x_{11}+x_{21}+...+x_{m 1}=b_{1}$ $x_{12}+x_{22}+...+x_{m 2}=b_{2}$ $x_{1 n}+x_{2 n}+...+x_{m n}=b_{n}$ $x_{11}+x_{12}+...+x_{\ln }=b_{1}$ $x_{21}+x_{22}+...+x_{2 n}=b_{2}$ $x_{m 1}+x_{m 2}+...+x_{m n}=b_{n}$ So the total number of constraints $= m + n$
Was this answer helpful?
0
0
Top Questions on Linear Programming Problem and its Mathematical Formulation