Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:
where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
The rank of matrix \(\begin{bmatrix} k & -1 & 0 \\[0.3em] 0 & k & -1 \\[0.3em] -1 & 0 & k \end{bmatrix}\) is 2, for \( k = \)
If \(A = \begin{bmatrix} 4 & 2 \\[0.3em] -3 & 3 \end{bmatrix}\), then \(A^{-1} =\)
A two-port network is defined by the relation
\(\text{I}_1 = 5V_1 + 3V_2 \)
\(\text{I}_2 = 2V_1 - 7V_2 \)
The value of \( Z_{12} \) is:
An induction motor when started on load does not accelerate up to full speed but runs at \({\frac {1}{17}}\)th of the rated speed. The motor is said to be:
A 0 to 30 V voltmeter has an error of \(\pm 2\%\) of FSD. What is the range of readings if the voltage is 30V?