(i) \(\frac{250}{400}\)
Greatest Common Factor of 250 and 400 is 50.
\(\frac{250 }{ 400} ÷ \frac{50 }{ 50}\) = \(\frac{5 }{ 8}\)
∴ \((i)\equiv(d)\)
Two more equivalent fractions are \(\frac{5 }{ 8} × \frac{3 }{ 2} = \frac{15 }{ 16}\) and \(\frac{5 }{ 8} × \frac{3 }{3} = \frac{15 }{ 24}\).
(ii) \(\frac{180}{400}\)
Greatest Common Factor of 180 and 200 is 20.
\(\frac{180}{400}\) ÷ \(\frac{20 }{ 20}\) = \(\frac{9 }{ 10}\)
∴ \((ii) \equiv (e)\).
Two more equivalent fractions are \(\frac{9 }{10} ×\frac{ 3}{ 2} = \frac{27 }{ 20}\) and \(\frac{9 }{ 10} × \frac{3 }{3} = \frac{27 }{ 30}\).
(iii) \(\frac{660}{990}\)
Greatest Common Factor of 660 and 990 is 330.
\(\frac{660}{990}\) ÷ \(\frac{330 }{ 330}\) = \(\frac{2 }{3}\)
∴ \((iii) \equiv (a)\).
Two more equivalent fractions are \(\frac{2 }{ 3} × \frac{2 }{ 2}\) = 4 / 6 and 2 /3 × 3 /3 = 6 / 9.
(iv) \(\frac{180}{360}\)
Greatest Common Factor of 180 and 360 is 18.
\(\frac{180}{360}\) ÷ \(\frac{18 }{ 18}\) = \(\frac{1 }{2}\).
∴ \((iv) \equiv (c)\).
Two more equivalent fractions are \(\frac{1}{2} ×\frac{ 2 }{ 2} = \frac{2 }{ 4}\) and \(\frac{1}{2} × \frac{3 }{3} = \frac{3 }{ 6}\).
(v) 220 / 550
Greatest Common Factor of 220 and 550 is 110.
\(\frac{220 }{ 550} ÷ \frac{110 }{ 110} = \frac{2 }{5}\)
∴ \((v) \equiv (b)\).
Two more equivalent fractions are \(\frac{2 }{ 5} × \frac{3} {4} = \frac{6}{20}\) and \(\frac{2}{ 5} × \frac{3 }{3} = \frac{6 }{ 15}\).
Complete the drawing shown in Fig. 9.14 to indicate where the free ends of the two wires should be joined to make the bulb glow