Question:

Match List-I with List-II
 

List-I List-II 
(A) Faraday’s Law(ii) \( \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \)
(B) Conservation Law(iii) \( \vec{\nabla} \times \vec{A} = 0 \)
(C) Ohm’s Law(iv) \( \vec{J} = \sigma \vec{E} \)
(D) Gauss’s Law(i) \( \frac{\rho}{\epsilon_0} \)

Show Hint

When matching laws to their expressions, remember that Faraday's Law involves the time derivative of the magnetic field, while Ohm's law relates current density to electric field.
Updated On: Sep 19, 2025
  • (A) - (II), (B) - (III), (C) - (IV), (D) - (I)
  • (A) - (I), (B) - (II), (C) - (IV), (D) - (III)
  • (A) - (III), (B) - (I), (C) - (IV), (D) - (II)
  • (A) - (II), (B) - (I), (C) - (III), (D) - (IV)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Understanding the match.
- Faraday's Law \( \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \), so it matches with (II).
- The Conservation Law involves the continuity equation, which matches with \( \vec{J} = \sigma \vec{E} \), so it matches with (IV).
- Ohm's Law \( \vec{J} = \sigma \vec{E} \), so it matches with (IV).
- Gauss's Law is represented by \( \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \), so it matches with (I).
Step 2: Conclusion.
Thus, the correct match is (2).
Was this answer helpful?
0
0