Step 1: Recall the formula for interplanar spacing in a cubic lattice.
The interplanar spacing \(d_{hkl}\) for a cubic lattice with lattice constant \(a\) is given by:
\[
d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}
\]
where \((h, k, l)\) are the Miller indices of the plane.
Step 2: Identify the given values.
We are given:
- Interplanar spacing, \(d = 3 \, \text{\AA}\)
- Miller indices for the plane, \((hkl) = (002)\)
Step 3: Substitute the values into the formula and solve for \(a\).
\[
3 \, \text{\AA} = \frac{a}{\sqrt{0^2 + 0^2 + 2^2}}
\]
\[
3 \, \text{\AA} = \frac{a}{\sqrt{4}}
\]
\[
3 \, \text{\AA} = \frac{a}{2}
\]
\[
a = 2 \times 3 \, \text{\AA} = 6 \, \text{\AA}
\]
Thus, the lattice constant is \( 6.0 \, \text{\AA} \).