Step-by-step Calculation
The depression in freezing point (\( \Delta T_f \)) is given by:
\[\Delta T_f = K_f \times m\]where:
\( \Delta T_f = 24^\circ\text{C} \) (since the freezing point is to be lowered to \( -24^\circ\text{C} \))
\( K_f = 1.86 \, \text{K kg mol}^{-1} \) (cryoscopic constant of water)
\( m \) is the molality of the solution.
Rearranging the formula to find molality:
\[m = \frac{\Delta T_f}{K_f} = \frac{24}{1.86} \approx 12.903 \, \text{mol kg}^{-1}\]
Calculating the Mass of Ethylene Glycol:
Molality (\( m \)) is defined as:
\[m = \frac{\text{moles of solute}}{\text{mass of solvent (in kg)}}\]
Let \( n \) be the number of moles of ethylene glycol. Therefore:
\[n = m \times \text{mass of solvent} = 12.903 \times 18.6 \approx 240.9958 \, \text{mol}\]
The mass of ethylene glycol is given by:
\[\text{Mass of ethylene glycol} = n \times \text{molar mass of ethylene glycol}\]
Substituting the known values:
\[\text{Mass of ethylene glycol} = 240.9958 \times 62 \approx 14,941.74 \, \text{g} \approx 15 \, \text{kg}\]
Conclusion:The mass of ethylene glycol required is approximately \( 15 \, \text{kg} \).
According to the generally accepted definition of the ideal solution there are equal interaction forces acting between molecules belonging to the same or different species. (This is equivalent to the statement that the activity of the components equals the concentration.) Strictly speaking, this concept is valid in ecological systems (isotopic mixtures of an element, hydrocarbons mixtures, etc.). It is still usual to talk about ideal solutions as limiting cases in reality since very dilute solutions behave ideally with respect to the solvent. This law is further supported by the fact that Raoult’s law empirically found for describing the behaviour of the solvent in dilute solutions can be deduced thermodynamically via the assumption of ideal behaviour of the solvent.
Answer the following questions:
(a) Give one example of miscible liquid pair which shows negative deviation from Raoult’s law. What is the reason for such deviation?
(b) (i) State Raoult’s law for a solution containing volatile components.
OR
(ii) Raoult’s law is a special case of Henry’s law. Comment.
(c) Write two characteristics of an ideal solution.