For paramagnetic substances, magnetic susceptibility \(\chi\) is inversely proportional to temperature \(T\) (Curie’s Law): \[ \chi \propto \frac{1}{T} \] Let \(\chi_1 = 1.2 \times 10^{-5}\) at \(T_1 = 300\,K\) We are to find \(\chi_2\) at \(T_2 = 200\,K\) Using Curie’s Law: \[ \frac{\chi_1}{\chi_2} = \frac{T_2}{T_1} \Rightarrow \frac{1.2 \times 10^{-5}}{\chi_2} = \frac{200}{300} = \frac{2}{3} \] \[ \chi_2 = \frac{1.2 \times 10^{-5} \times 3}{2} = 1.8 \times 10^{-5} \times 3 = 5.4 \times 10^{-5} \] Wait! There’s a mistake above — let's redo the correct way: \[ \chi_2 = \chi_1 \times \frac{T_1}{T_2} = 1.2 \times 10^{-5} \times \frac{300}{200} = 1.2 \times 10^{-5} \times 1.5 = 1.8 \times 10^{-5} \] Correction: The correct value is: \[ \chi_2 = 1.8 \times 10^{-5} \] So the correct answer is: (3) \(1.8 \times 10^{-5}\)
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____.