Match List-I with List-II.
| List-I (A) Coefficient of viscosity (B) Intensity of wave (C) Pressure gradient (D) Compressibility | List-II (I) [ML-1T-1] (II) [MT-3] (III) [ML-2T-2] (IV) [M-1LT2] |
The equation for real gas is given by $ \left( P + \frac{a}{V^2} \right)(V - b) = RT $, where $ P $, $ V $, $ T $, and $ R $ are the pressure, volume, temperature and gas constant, respectively. The dimension of $ ab $ is equivalent to that of:
The dimensions of a physical quantity \( \epsilon_0 \frac{d\Phi_E}{dt} \) are similar to [Symbols have their usual meanings]
A Wheatstone bridge is used to measure strain as shown in the figure below.
Initially, the bridge was balanced. When a strain is applied to the resistor \( R_{{strain}} \), along its length, the output voltage \( V_{{out}} \) is 10 mV. If \( R_{{strain}} \) is a cylindrical resistor of length \( l \) and cross-sectional area \( A \), the magnitude of the applied strain is _______.
(rounded off to two decimal places) 
An ideal, massless spring with spring constant 1 N/m (upper panel of the given figure) is cut into 5 equal parts. If two of these parts are connected in parallel (lower panel of the given figure), what is the resultant spring constant in N/m? (rounded off to the nearest integer)
The plot of \( \log_{10} ({BMR}) \) as a function of \( \log_{10} (M) \) is a straight line with slope 0.75, where \( M \) is the mass of the person and BMR is the Basal Metabolic Rate. If a child with \( M = 10 \, {kg} \) has a BMR = 600 kcal/day, the BMR for an adult with \( M = 100 \, {kg} \) is _______ kcal/day. (rounded off to the nearest integer)
For the RLC circuit shown below, the root mean square current \( I_{{rms}} \) at the resonance frequency is _______amperes. (rounded off to the nearest integer)
\[ V_{{rms}} = 240 \, {V}, \quad R = 60 \, \Omega, \quad L = 10 \, {mH}, \quad C = 8 \, \mu {F} \]
The frequency of the oscillator circuit shown in the figure below is _______(in kHz, rounded off to two decimal places). 
Given: \( R = 1 \, k\Omega; R_1 = 2 \, k\Omega; R_2 = 6 \, k\Omega; C = 0.1 \, \mu F \)