Lithium aluminium hydride can be prepared from the reaction of:
\(LiCl \ and \ Al_2H_6\)
\(LiH \ and \ Al_2Cl_6\)
\(LiCl, Al \ and \ H_2\)
\(LiH \ and \ Al(OH)_3\)
Step 1: Reaction for Preparation of \(\text{LiAlH}_4\)
Lithium aluminium hydride \(\text{LiAlH}_4\) is prepared by the reaction of lithium hydride (\(\text{LiH}\)) with aluminium chloride \(\text{Al}_2\text{Cl}_6\). The reaction is as follows:
\[8\text{LiH} + \text{Al}_2\text{Cl}_6 \rightarrow 2\text{LiAlH}_4 + 6\text{LiCl}.\]
Conclusion: The correct reactants for preparing \(\text{LiAlH}_4\) are \(\text{LiH}\) and \(\text{Al}_2\text{Cl}_6\). Therefore, the correct answer is (2)
Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Match List I with List II:
Choose the correct answer from the options given below:
The metal ions that have the calculated spin only magnetic moment value of 4.9 B.M. are
A. $ Cr^{2+} $
B. $ Fe^{2+} $
C. $ Fe^{3+} $
D. $ Co^{2+} $
E. $ Mn^{2+} $
Choose the correct answer from the options given below
Which of the following circuits has the same output as that of the given circuit?

Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).