List-I shows four configurations, each consisting of a pair of ideal electric dipoles. Each dipole has a dipole moment of magnitude $ p $, oriented as marked by arrows in the figures. In all the configurations the dipoles are fixed such that they are at a distance $ 2r $ apart along the $ x $-direction. The midpoint of the line joining the two dipoles is $ X $. The possible resultant electric fields $ \vec{E} $ at $ X $ are given in List-II. Choose the option that describes the correct match between the entries in List-I to those in List-II. 
P \( \rightarrow \) 2, Q \( \rightarrow \) 1, R \( \rightarrow \) 3, S \( \rightarrow \) 5
Match List-I with List-II.
Choose the correct answer from the options given below :}
There are three co-centric conducting spherical shells $A$, $B$ and $C$ of radii $a$, $b$ and $c$ respectively $(c>b>a)$ and they are charged with charges $q_1$, $q_2$ and $q_3$ respectively. The potentials of the spheres $A$, $B$ and $C$ respectively are:
Two resistors $2\,\Omega$ and $3\,\Omega$ are connected in the gaps of a bridge as shown in the figure. The null point is obtained with the contact of jockey at some point on wire $XY$. When an unknown resistor is connected in parallel with $3\,\Omega$ resistor, the null point is shifted by $22.5\,\text{cm}$ towards $Y$. The resistance of unknown resistor is ___ $\Omega$. 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?