Line l is the bisector of an angle ∠ A and B is any point on l. BP and BQ are perpendiculars from B to the arms of ∠A (see Fig. 7.20). Show that:
(i) ∆ APB ≅ ∆ AQB
(ii) BP = BQ or B is equidistant from the arms of ∠A.

In ∆APB and ∆AQB,
∠APB = ∠AQB (Each 90º)
∠PAB = ∠QAB (l is the angle bisector of ∠A)
AB = AB (Common)
∠∆APB ∠∆AQB (By AAS congruence rule)
∴ BP = BQ (By CPCT)
rms of ∠A. Or, it can be said that B is equidistant from the a
Section | Number of girls per thousand boys |
|---|---|
Scheduled Caste (SC) | 940 |
Scheduled Tribe (ST) | 970 |
Non-SC/ST | 920 |
Backward districts | 950 |
Non-backward districts | 920 |
Rural | 930 |
Urban | 910 |
(i) Represent the information above by a bar graph.
(ii) In the classroom discuss what conclusions can be arrived at from the graph.
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)