To solve the limit problem \(\lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4}\), we use a binomial expansion to approximate the square root functions when \(y\) is approaching zero. We have:
\[
\sqrt{1 + y^4} \approx 1 + \frac{y^4}{2} - \frac{y^8}{8} + \cdots
\]
Substituting this into the outer square root, we get:
\[
\sqrt{1 + \sqrt{1 + y^4}} \approx \sqrt{1 + \left(1 + \frac{y^4}{2} - \frac{y^8}{8}\right)} \approx \sqrt{2 + \frac{y^4}{2} - \frac{y^8}{8}}
\]
Expanding again using binomial approximation:
\[
\sqrt{2 + \frac{y^4}{2} - \frac{y^8}{8}} \approx \sqrt{2} + \frac{\frac{y^4}{2}}{2\sqrt{2}} = \sqrt{2} + \frac{y^4}{4\sqrt{2}}
\]
Now, replace back into the original limit expression:
\[
\frac{\left(\sqrt{2} + \frac{y^4}{4\sqrt{2}}\right) - \sqrt{2}}{y^4} = \frac{\frac{y^4}{4\sqrt{2}}}{y^4} = \frac{1}{4\sqrt{2}}
\]
Therefore, the limit evaluates to:
\[
\boxed{\frac{1}{4\sqrt{2}}}
\]
The correct answer is \( \frac{1}{4\sqrt{2}} \).