Question:

\[ \lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4} = \ ? \]

Show Hint

When evaluating limits involving nested square roots and small values, consider using binomial or Taylor approximations to simplify expressions.
Updated On: Jun 4, 2025
  • \( \dfrac{1}{4\sqrt{2}} \)
  • \( \dfrac{1}{2\sqrt{2}(1 + \sqrt{2})} \)
  • \( \dfrac{1}{2\sqrt{2}} \)
  • \( \dfrac{1}{4\sqrt{2}(1 + \sqrt{2})} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To solve the limit problem \(\lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4}\), we use a binomial expansion to approximate the square root functions when \(y\) is approaching zero. We have:
\[ \sqrt{1 + y^4} \approx 1 + \frac{y^4}{2} - \frac{y^8}{8} + \cdots \]
Substituting this into the outer square root, we get:
\[ \sqrt{1 + \sqrt{1 + y^4}} \approx \sqrt{1 + \left(1 + \frac{y^4}{2} - \frac{y^8}{8}\right)} \approx \sqrt{2 + \frac{y^4}{2} - \frac{y^8}{8}} \]
Expanding again using binomial approximation:
\[ \sqrt{2 + \frac{y^4}{2} - \frac{y^8}{8}} \approx \sqrt{2} + \frac{\frac{y^4}{2}}{2\sqrt{2}} = \sqrt{2} + \frac{y^4}{4\sqrt{2}} \]
Now, replace back into the original limit expression:
\[ \frac{\left(\sqrt{2} + \frac{y^4}{4\sqrt{2}}\right) - \sqrt{2}}{y^4} = \frac{\frac{y^4}{4\sqrt{2}}}{y^4} = \frac{1}{4\sqrt{2}} \]
Therefore, the limit evaluates to:
\[ \boxed{\frac{1}{4\sqrt{2}}} \]
The correct answer is \( \frac{1}{4\sqrt{2}} \).
Was this answer helpful?
0
0