We need to evaluate the limit $\lim_{x \to \infty} x \tan \left( \frac{1}{x} \right)$.
Let $t = \frac{1}{x}$. As $x \to \infty$, $t \to 0$.
So the limit becomes:
$$\lim_{t \to 0} \frac{1}{t} \tan(t) = \lim_{t \to 0} \frac{\tan(t)}{t}$$
We know that $\lim_{t \to 0} \frac{\sin(t)}{t} = 1$ and $\lim_{t \to 0} \cos(t) = 1$.
We can rewrite the expression as:
$$\lim_{t \to 0} \frac{\tan(t)}{t} = \lim_{t \to 0} \frac{\sin(t)}{t \cos(t)} = \lim_{t \to 0} \left( \frac{\sin(t)}{t} \cdot \frac{1}{\cos(t)} \right)$$
Using the limit properties:
$$= \left( \lim_{t \to 0} \frac{\sin(t)}{t} \right) \cdot \left( \lim_{t \to 0} \frac{1}{\cos(t)} \right)$$
$$= (1) \cdot \left( \frac{1}{1} \right) = 1 \cdot 1 = 1$$
Thus, $\lim_{x \to \infty} x \tan \left( \frac{1}{x} \right) = 1$.