>
Exams
>
Engineering Mathematics
>
Calculus
>
lim x to infty x tan left frac 1 x right
Question:
$\lim_{x \to \infty} x \tan \left( \frac{1}{x} \right) = $ _____
Show Hint
When dealing with limits involving trigonometric functions as $x \to \infty$ or $x \to 0$, try using standard limits like $\lim_{t \to 0} \frac{\sin(t)}{t} = 1$ by appropriate substitution.
AP PGECET - 2024
AP PGECET
Updated On:
May 6, 2025
\( 0 \)
\( 1 \)
\( 2 \)
\( 3 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
We need to evaluate the limit $\lim_{x \to \infty} x \tan \left( \frac{1}{x} \right)$. Let $t = \frac{1}{x}$. As $x \to \infty$, $t \to 0$. So the limit becomes: $$\lim_{t \to 0} \frac{1}{t} \tan(t) = \lim_{t \to 0} \frac{\tan(t)}{t}$$ We know that $\lim_{t \to 0} \frac{\sin(t)}{t} = 1$ and $\lim_{t \to 0} \cos(t) = 1$. We can rewrite the expression as: $$\lim_{t \to 0} \frac{\tan(t)}{t} = \lim_{t \to 0} \frac{\sin(t)}{t \cos(t)} = \lim_{t \to 0} \left( \frac{\sin(t)}{t} \cdot \frac{1}{\cos(t)} \right)$$ Using the limit properties: $$= \left( \lim_{t \to 0} \frac{\sin(t)}{t} \right) \cdot \left( \lim_{t \to 0} \frac{1}{\cos(t)} \right)$$ $$= (1) \cdot \left( \frac{1}{1} \right) = 1 \cdot 1 = 1$$ Thus, $\lim_{x \to \infty} x \tan \left( \frac{1}{x} \right) = 1$.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Calculus
If \( \vec{F}(x, y, z) = 3x^2y\,\hat{i} + 5y^2z\,\hat{j} - 8xyz\,\hat{k} \) is a continuously differentiable vector field, then the curl of \( \vec{F} \) at (1,1,1) is ...............
AP PGECET - 2025
Mathematics
Calculus
View Solution
Let \( f(x) = x^3 - \dfrac{9}{2}x^2 + 6x - 2 \) be a function defined on the closed interval \([0, 3]\). Then, the global maximum value of \( f(x) \) is ...............
AP PGECET - 2025
Mathematics
Calculus
View Solution
The value of the integral \( \int_1^3 \frac{2}{x} \, dx \), when evaluated by using Simpson’s \( \frac{1}{3} \) rule on two equal subintervals each of length 1, is ...........
AP PGECET - 2025
Mathematics
Calculus
View Solution
If $\vec{F} = x(x^2 + y^2 + z^2)\hat{i} + 2y(x^2 + y^2 + z^2)\hat{j} + 3z(x^2 + y^2 + z^2)\hat{k}$, then $\text{div} \, \vec{F}$ at $(1,1,1)$ is equal to ______
AP PGECET - 2025
Mathematics
Calculus
View Solution
If $I = \frac{1}{2\pi i} \oint \frac{z e^{1/z}}{z} \, dz$ in the unit circle $|z| = 1$, then:
AP PGECET - 2025
Mathematics
Calculus
View Solution
View More Questions
Questions Asked in AP PGECET exam
Let \( z \) be a complex variable and \( C : |z| = 3 \) be a circle in the complex plane. Then,
\[ \oint_C \frac{z^2}{(z - 1)^2(z + 2)} \, dz = \]
AP PGECET - 2025
Complex numbers
View Solution
For a stable closed loop system, the gain at phase crossover frequency should always be:
AP PGECET - 2025
Control Systems
View Solution
If the matrix
\[ A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix} \] has three distinct eigenvalues, and one of its eigenvectors is \[ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \] then which of the following can be another eigenvector of \( A \)?
AP PGECET - 2025
Linear Algebra
View Solution
If the systems of equations $3x - 2y + z = 0$, $5x + ay + 15z = 0$, $x + 2y - 3z = 0$ have non-zero solution, then $a =$ ...............
AP PGECET - 2025
Linear Algebra
View Solution
Which of the options correctly represents the Laplace inverse of \( \dfrac{2}{s^3} \)?
AP PGECET - 2025
Laplace transforms
View Solution
View More Questions