>
Exams
>
Engineering Mathematics
>
Calculus
>
lim x to infty x tan left frac 1 x right
Question:
$\lim_{x \to \infty} x \tan \left( \frac{1}{x} \right) = $ _____
Show Hint
When dealing with limits involving trigonometric functions as $x \to \infty$ or $x \to 0$, try using standard limits like $\lim_{t \to 0} \frac{\sin(t)}{t} = 1$ by appropriate substitution.
AP PGECET - 2024
AP PGECET
Updated On:
May 6, 2025
\( 0 \)
\( 1 \)
\( 2 \)
\( 3 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
We need to evaluate the limit $\lim_{x \to \infty} x \tan \left( \frac{1}{x} \right)$. Let $t = \frac{1}{x}$. As $x \to \infty$, $t \to 0$. So the limit becomes: $$\lim_{t \to 0} \frac{1}{t} \tan(t) = \lim_{t \to 0} \frac{\tan(t)}{t}$$ We know that $\lim_{t \to 0} \frac{\sin(t)}{t} = 1$ and $\lim_{t \to 0} \cos(t) = 1$. We can rewrite the expression as: $$\lim_{t \to 0} \frac{\tan(t)}{t} = \lim_{t \to 0} \frac{\sin(t)}{t \cos(t)} = \lim_{t \to 0} \left( \frac{\sin(t)}{t} \cdot \frac{1}{\cos(t)} \right)$$ Using the limit properties: $$= \left( \lim_{t \to 0} \frac{\sin(t)}{t} \right) \cdot \left( \lim_{t \to 0} \frac{1}{\cos(t)} \right)$$ $$= (1) \cdot \left( \frac{1}{1} \right) = 1 \cdot 1 = 1$$ Thus, $\lim_{x \to \infty} x \tan \left( \frac{1}{x} \right) = 1$.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Calculus
Write the condition for the function \( f(x) \), to be strictly increasing, for all \( x \in \mathbb{R} \).
Maharashtra Class XII - 2025
Mathematics & Statistics
Calculus
View Solution
The value of \[ \int_0^1 \left( \int_0^{\sqrt{y}} 3e^{x^3} \, dx \right) dy \] is equal to
IIT JAM MA - 2025
Mathematics
Calculus
View Solution
Let \( f : \mathbb{R}^2 \to \mathbb{R} \) be defined by \[ f(x, y) = \begin{cases} \frac{x^2 + y^5}{x^2 + y^4} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases} \] Then, which of the following is/are TRUE?
IIT JAM MA - 2025
Mathematics
Calculus
View Solution
Consider the following subspaces of the real vector space \( \mathbb{R}^3 \): \[ V_1 = \text{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad V_2 = \text{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}, \quad V_3 = \text{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}, \quad V_4 = \text{span} \left\{ \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} \right\}, \quad V_5 = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} \right\}. \] Then, which of the following is/are TRUE?
IIT JAM MA - 2025
Mathematics
Calculus
View Solution
Let \( f : \mathbb{R} \to \mathbb{R} \) be a continuous function satisfying \[ \int_0^{\frac{\pi}{4}} \left( \sin(x) f(x) + \cos(x) \int_0^x f(t) \, dt \right) \, dx = \sqrt{2}. \] Then, the value of \[ \int_0^{\frac{\pi}{4}} f(x) \, dx \] is equal to ............... (rounded off to two decimal places).
IIT JAM MA - 2025
Mathematics
Calculus
View Solution
View More Questions
Questions Asked in AP PGECET exam
The multiple access method used in Global Positioning Systems is ________.
AP PGECET - 2025
Digital Electronics and Logic Gates
View Solution
National Remote Sensing Day is celebrated on ________ every year.
AP PGECET - 2025
Remote Sensor
View Solution
SDI stands for
AP PGECET - 2025
Remote Sensor
View Solution
Suppose \( R_1 \) and \( R_2 \) are reflexive relations on a set \( A \). Which of the following statements is correct?
AP PGECET - 2025
Set Theory
View Solution
Determine the value of $\lambda$ and $\mu$ for which the system of equations
$x + 2y + z = 6$,
$x + 4y + 3z = 10$,
$2x + 4y + \lambda z = \mu$
has a unique solution.
AP PGECET - 2025
Linear Algebra
View Solution
View More Questions