>
Exams
>
Mathematics
>
Calculus
>
if vec f x x 2 y 2 z 2 hat i 2y x 2 y 2 z 2 hat j
Question:
If $\vec{F} = x(x^2 + y^2 + z^2)\hat{i} + 2y(x^2 + y^2 + z^2)\hat{j} + 3z(x^2 + y^2 + z^2)\hat{k}$, then $\text{div} \, \vec{F}$ at $(1,1,1)$ is equal to ______
Show Hint
Use the product rule when differentiating expressions like $x f$, $y f$, and $z f$, especially when $f$ is a function of multiple variables.
AP PGECET - 2025
AP PGECET
Updated On:
Jun 25, 2025
12
21
30
33
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
We are given the vector field:
$\vec{F} = x(x^2 + y^2 + z^2)\hat{i} + 2y(x^2 + y^2 + z^2)\hat{j} + 3z(x^2 + y^2 + z^2)\hat{k}$
Let $f = x^2 + y^2 + z^2$
Then, $\vec{F} = x f \hat{i} + 2y f \hat{j} + 3z f \hat{k}$
The divergence is:
$\nabla \cdot \vec{F} = \frac{\partial}{\partial x}(x f) + \frac{\partial}{\partial y}(2y f) + \frac{\partial}{\partial z}(3z f)$
Using the product rule:
$\frac{\partial}{\partial x}(x f) = f + x \frac{\partial f}{\partial x} = f + x(2x) = f + 2x^2$
$\frac{\partial}{\partial y}(2y f) = 2f + 2y \frac{\partial f}{\partial y} = 2f + 2y(2y) = 2f + 4y^2$
$\frac{\partial}{\partial z}(3z f) = 3f + 3z \frac{\partial f}{\partial z} = 3f + 3z(2z) = 3f + 6z^2$
Add all components:
$\nabla \cdot \vec{F} = f + 2x^2 + 2f + 4y^2 + 3f + 6z^2 = (f + 2f + 3f) + (2x^2 + 4y^2 + 6z^2)$
$= 6f + 2x^2 + 4y^2 + 6z^2$
Now substitute $(1,1,1)$:
$f = 1^2 + 1^2 + 1^2 = 3$
So, $\nabla \cdot \vec{F} = 6(3) + 2(1^2) + 4(1^2) + 6(1^2) = 18 + 2 + 4 + 6 = 30$
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Calculus
If \( \vec{F}(x, y, z) = 3x^2y\,\hat{i} + 5y^2z\,\hat{j} - 8xyz\,\hat{k} \) is a continuously differentiable vector field, then the curl of \( \vec{F} \) at (1,1,1) is ...............
AP PGECET - 2025
Mathematics
Calculus
View Solution
Let \( f(x) = x^3 - \dfrac{9}{2}x^2 + 6x - 2 \) be a function defined on the closed interval \([0, 3]\). Then, the global maximum value of \( f(x) \) is ...............
AP PGECET - 2025
Mathematics
Calculus
View Solution
The value of the integral \( \int_1^3 \frac{2}{x} \, dx \), when evaluated by using Simpson’s \( \frac{1}{3} \) rule on two equal subintervals each of length 1, is ...........
AP PGECET - 2025
Mathematics
Calculus
View Solution
If $I = \frac{1}{2\pi i} \oint \frac{z e^{1/z}}{z} \, dz$ in the unit circle $|z| = 1$, then:
AP PGECET - 2025
Mathematics
Calculus
View Solution
In what direction from the point $(2, 1, -1)$ is the directional derivative of $\varphi = xy^2z$ a maximum?
AP PGECET - 2025
Mathematics
Calculus
View Solution
View More Questions
Questions Asked in AP PGECET exam
Let \( z \) be a complex variable and \( C : |z| = 3 \) be a circle in the complex plane. Then,
\[ \oint_C \frac{z^2}{(z - 1)^2(z + 2)} \, dz = \]
AP PGECET - 2025
Complex numbers
View Solution
For a stable closed loop system, the gain at phase crossover frequency should always be:
AP PGECET - 2025
Control Systems
View Solution
If the matrix
\[ A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix} \] has three distinct eigenvalues, and one of its eigenvectors is \[ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \] then which of the following can be another eigenvector of \( A \)?
AP PGECET - 2025
Linear Algebra
View Solution
If the systems of equations $3x - 2y + z = 0$, $5x + ay + 15z = 0$, $x + 2y - 3z = 0$ have non-zero solution, then $a =$ ...............
AP PGECET - 2025
Linear Algebra
View Solution
Which of the options correctly represents the Laplace inverse of \( \dfrac{2}{s^3} \)?
AP PGECET - 2025
Laplace transforms
View Solution
View More Questions