>
Exams
>
Mathematics
>
Calculus
>
if vec f x x 2 y 2 z 2 hat i 2y x 2 y 2 z 2 hat j
Question:
If $\vec{F} = x(x^2 + y^2 + z^2)\hat{i} + 2y(x^2 + y^2 + z^2)\hat{j} + 3z(x^2 + y^2 + z^2)\hat{k}$, then $\text{div} \, \vec{F}$ at $(1,1,1)$ is equal to ______
Show Hint
Use the product rule when differentiating expressions like $x f$, $y f$, and $z f$, especially when $f$ is a function of multiple variables.
AP PGECET - 2025
AP PGECET
Updated On:
Jun 25, 2025
12
21
30
33
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
We are given the vector field:
$\vec{F} = x(x^2 + y^2 + z^2)\hat{i} + 2y(x^2 + y^2 + z^2)\hat{j} + 3z(x^2 + y^2 + z^2)\hat{k}$
Let $f = x^2 + y^2 + z^2$
Then, $\vec{F} = x f \hat{i} + 2y f \hat{j} + 3z f \hat{k}$
The divergence is:
$\nabla \cdot \vec{F} = \frac{\partial}{\partial x}(x f) + \frac{\partial}{\partial y}(2y f) + \frac{\partial}{\partial z}(3z f)$
Using the product rule:
$\frac{\partial}{\partial x}(x f) = f + x \frac{\partial f}{\partial x} = f + x(2x) = f + 2x^2$
$\frac{\partial}{\partial y}(2y f) = 2f + 2y \frac{\partial f}{\partial y} = 2f + 2y(2y) = 2f + 4y^2$
$\frac{\partial}{\partial z}(3z f) = 3f + 3z \frac{\partial f}{\partial z} = 3f + 3z(2z) = 3f + 6z^2$
Add all components:
$\nabla \cdot \vec{F} = f + 2x^2 + 2f + 4y^2 + 3f + 6z^2 = (f + 2f + 3f) + (2x^2 + 4y^2 + 6z^2)$
$= 6f + 2x^2 + 4y^2 + 6z^2$
Now substitute $(1,1,1)$:
$f = 1^2 + 1^2 + 1^2 = 3$
So, $\nabla \cdot \vec{F} = 6(3) + 2(1^2) + 4(1^2) + 6(1^2) = 18 + 2 + 4 + 6 = 30$
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Calculus
Write the condition for the function \( f(x) \), to be strictly increasing, for all \( x \in \mathbb{R} \).
Maharashtra Class XII - 2025
Mathematics & Statistics
Calculus
View Solution
The value of \[ \int_0^1 \left( \int_0^{\sqrt{y}} 3e^{x^3} \, dx \right) dy \] is equal to
IIT JAM MA - 2025
Mathematics
Calculus
View Solution
Let \( f : \mathbb{R}^2 \to \mathbb{R} \) be defined by \[ f(x, y) = \begin{cases} \frac{x^2 + y^5}{x^2 + y^4} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases} \] Then, which of the following is/are TRUE?
IIT JAM MA - 2025
Mathematics
Calculus
View Solution
Consider the following subspaces of the real vector space \( \mathbb{R}^3 \): \[ V_1 = \text{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}, \quad V_2 = \text{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}, \quad V_3 = \text{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}, \quad V_4 = \text{span} \left\{ \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} \right\}, \quad V_5 = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} \right\}. \] Then, which of the following is/are TRUE?
IIT JAM MA - 2025
Mathematics
Calculus
View Solution
Let \( f : \mathbb{R} \to \mathbb{R} \) be a continuous function satisfying \[ \int_0^{\frac{\pi}{4}} \left( \sin(x) f(x) + \cos(x) \int_0^x f(t) \, dt \right) \, dx = \sqrt{2}. \] Then, the value of \[ \int_0^{\frac{\pi}{4}} f(x) \, dx \] is equal to ............... (rounded off to two decimal places).
IIT JAM MA - 2025
Mathematics
Calculus
View Solution
View More Questions
Questions Asked in AP PGECET exam
The multiple access method used in Global Positioning Systems is ________.
AP PGECET - 2025
Digital Electronics and Logic Gates
View Solution
National Remote Sensing Day is celebrated on ________ every year.
AP PGECET - 2025
Remote Sensor
View Solution
SDI stands for
AP PGECET - 2025
Remote Sensor
View Solution
Suppose \( R_1 \) and \( R_2 \) are reflexive relations on a set \( A \). Which of the following statements is correct?
AP PGECET - 2025
Set Theory
View Solution
Determine the value of $\lambda$ and $\mu$ for which the system of equations
$x + 2y + z = 6$,
$x + 4y + 3z = 10$,
$2x + 4y + \lambda z = \mu$
has a unique solution.
AP PGECET - 2025
Linear Algebra
View Solution
View More Questions