Use identity \( \frac{1-\tan A}{1+\tan A} = \tan(\frac{\pi}{4}-A) \).
For limits approaching a value \(a\), substitute \(x=a-h\) or \(x=a+h\) where \(h \to 0\).
Use small angle approximations: \(\tan\theta \approx \theta\), \(1-\cos\theta \approx \theta^2/2\).
Let the limit be L.
First term: \( \frac{1-\tan(x/2)}{1+\tan(x/2)} = \tan(\pi/4 - x/2) \).
Let \(x = \pi/2 - h\). As \(x \to \pi/2\), \(h \to 0\).
Then \(x/2 = \pi/4 - h/2\).
So, \(\pi/4 - x/2 = \pi/4 - (\pi/4 - h/2) = h/2\).
First term becomes \(\tan(h/2)\).
Second term: \(1-\sin x = 1-\sin(\pi/2-h) = 1-\cos h\).
Denominator: \(\pi-2x = \pi-2(\pi/2-h) = \pi - (\pi-2h) = 2h\).
So \((\pi-2x)^3 = (2h)^3 = 8h^3\).
The expression for the limit is:
\( L = \lim_{h \to 0} \tan(h/2) \cdot \frac{1-\cos h}{8h^3} \)
Using approximations for small \(h\): \(\tan(h/2) \approx h/2\) and \(1-\cos h \approx h^2/2\).
\( L = \lim_{h \to 0} \frac{(h/2) \cdot (h^2/2)}{8h^3} = \lim_{h \to 0} \frac{h^3/4}{8h^3} \)
\( L = \frac{1/4}{8} = \frac{1}{32} \).
This matches option (a).
\[ \boxed{\frac{1}{32}} \]