Let $L = \lim_{x \to 0} \frac{3^{\sin x} - 2^{\tan x}}{\sin x}$.
We can rewrite the expression as:
$$L = \lim_{x \to 0} \frac{3^{\sin x} - 1 - (2^{\tan x} - 1)}{\sin x}$$
$$L = \lim_{x \to 0} \frac{3^{\sin x} - 1}{\sin x} - \lim_{x \to 0} \frac{2^{\tan x} - 1}{\sin x}$$
We know that $\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$.
So, $\lim_{x \to 0} \frac{3^{\sin x} - 1}{\sin x} = \ln 3$.
For the second term:
$$\lim_{x \to 0} \frac{2^{\tan x} - 1}{\sin x} = \lim_{x \to 0} \frac{2^{\tan x} - 1}{\tan x} \cdot \frac{\tan x}{\sin x}$$
$$\lim_{x \to 0} \frac{2^{\tan x} - 1}{\tan x} = \ln 2$$
$$\lim_{x \to 0} \frac{\tan x}{\sin x} = \lim_{x \to 0} \frac{\sin x}{\cos x} \cdot \frac{1}{\sin x} = \lim_{x \to 0} \frac{1}{\cos x} = 1$$
Thus, $\lim_{x \to 0} \frac{2^{\tan x} - 1}{\sin x} = \ln 2 \cdot 1 = \ln 2$.
Therefore,
$$L = \ln 3 - \ln 2 = \ln \frac{3}{2}$$
Final Answer: The final answer is $\boxed{(4)}$