Let \( L \) be the limit. Then
\[
\ln L = \lim_{n \to \infty} \frac{1}{n} \ln \left[ \prod_{k=1}^n \left( 1 + \frac{k^2}{n^2} \right) \right]
\]
\[
= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \ln \left( 1 + \frac{k^2}{n^2} \right)
\]
\[
= \int_0^1 \ln (1 + x^2) \, dx.
\]
We integrate by parts, with \( u = \ln (1 + x^2) \) and \( dv = dx \), so \( du = \frac{2x}{1 + x^2} \, dx \) and \( v = x \). Then
\[
\int_0^1 \ln (1 + x^2) \, dx = x \ln (1 + x^2) \bigg|_0^1 - \int_0^1 \frac{2x^2}{1 + x^2} \, dx
\]
\[
= \ln 2 - 2 \int_0^1 \frac{x^2}{1 + x^2} \, dx
\]
\[
= \ln 2 - 2 \int_0^1 \frac{1 + x^2 - 1}{1 + x^2} \, dx
\]
\[
= \ln 2 - 2 \int_0^1 \left( 1 - \frac{1}{1 + x^2} \right) \, dx
\]
\[
= \ln 2 - 2 (x - \arctan x) \bigg|_0^1
\]
\[
= \ln 2 - 2 \left( 1 - \frac{\pi}{4} \right)
\]
\[
= \ln 2 - 2 + \frac{\pi}{2}.
\]
Then
\[
L = e^{\ln 2 - 2 + \frac{\pi}{2}} = e^{\ln 2} e^{-2 + \frac{\pi}{2}} = 2 e^{\frac{\pi - 4}{2}}.
\]