Step 1: Define the property of an element being its own inverse.
An element \(x\) in a group is its own inverse if:
\[
x + x \equiv 0 \, (\text{mod } n).
\]
This simplifies to:
\[
2x \equiv 0 \, (\text{mod } n).
\]
Step 2: Analyze each group.
\(Z_2\): The elements are \(\{0, 1\}\).
\[
2x \equiv 0 \, (\text{mod } 2) \implies x = 0, 1.
\]
\(Z_3\): The elements are \(\{0, 1, 2\}\).
\[
2x \equiv 0 \, (\text{mod } 3) \implies x = 0.
\]
\(Z_4\): The elements are \(\{0, 1, 2, 3\}\).
\[
2x \equiv 0 \, (\text{mod } 4) \implies x = 0, 2.
\]
Step 3: Combine the results for \(Z_2 \times Z_3 \times Z_4\).
The total number of elements in \(Z_2 \times Z_3 \times Z_4\) is:
\[
|Z_2 \times Z_3 \times Z_4| = 2 \times 3 \times 4 = 24.
\]
For an element \((x_2, x_3, x_4) \in Z_2 \times Z_3 \times Z_4\) to be its own inverse:
\(x_2 \in \{0, 1\}\) (\(2\) choices).
\(x_3 \in \{0\}\) (\(1\) choice).
\(x_4 \in \{0, 2\}\) (\(2\) choices).
The total number of such elements is:
\[
2 \times 1 \times 2 = 4.
\]
Final Answer:
\[
\boxed{4}
\]