Step 1: Instruction format analysis.
Each instruction is \(32\) bits in total. Based on the formats:
R-type instruction fields:
\[
\text{OPCODE} + \text{UNUSED} + \text{DST Register} + \text{SRC Register1} + \text{SRC Register2} = 32 \, \text{bits}.
\]
I-type instruction fields:
\[
\text{OPCODE} + \text{DST Register} + \text{SRC Register} + \text{Immediate Value/Address} = 32 \, \text{bits}.
\]
Step 2: Determine the number of bits for the registers.
The processor has \(50\) architectural registers. The number of bits required to uniquely identify a register is:
\[
\text{Register bits} = \lceil \log_2(50) \rceil = 6 \, \text{bits}.
\]
Thus, each register field (DST Register, SRC Register1, SRC Register2) uses \(6\) bits.
Step 3: Determine the number of bits for the OPCODE field.
The ISA contains \(150\) distinct instructions, equally divided into R-type and I-type. Since \(1\) bit in the OPCODE field is used to distinguish between instruction types, the remaining bits encode the operations:
\[
\text{OPCODE bits} = \lceil \log_2(150) \rceil = 8 \, \text{bits}.
\]
Step 4: Calculate the number of bits for the UNUSED field (R-type) and Immediate Value/Address field (I-type).
R-type: From the total \(32\) bits, the UNUSED field is:
\[
X = 32 - (\text{OPCODE} + 3 \times \text{Register bits}) = 32 - (8 + 3 \times 6) = 6 \, \text{bits}.
\]
I-type: The Immediate Value/Address field uses:
\[
Z = 32 - (\text{OPCODE} + 2 \times \text{Register bits}) = 32 - (8 + 2 \times 6) = 12 \, \text{bits}.
\]
Step 5: Compute \(X + 2Y + Z\).
Substituting the values of \(X\), \(Y\), and \(Z\):
\[
X + 2Y + Z = 6 + 2 \times 8 + 12 = 34.
\]
Final Answer:
\[
\boxed{34}
\]