Given:
\[ \frac{dy}{dx} = (x + y + 2)^2, \quad y(0) = -2. \]
Step 1: Substitute \( v = x + y + 2 \):
Let \( x + y + 2 = v \). Then, \[ 1 + \frac{dy}{dx} = \frac{dv}{dx}. \] From the differential equation, \[ \frac{dv}{dx} = 1 + v^2. \]
Step 2: Separate Variables and Integrate:
\[ \int \frac{dv}{1 + v^2} = \int dx. \] We have: \[ \tan^{-1}(v) = x + C. \]
Step 3: Apply Initial Condition:
At \( x = 0, y = -2 \), so \( v = 0 \), giving \( C = 0 \). Thus, \[ \tan^{-1}(x + y + 2) = x, \] or \[ y = \tan x - x - 2. \]
Step 4: Determine \( f_{\text{min}} \) and \( f_{\text{max}} \) on \([0, \frac{\pi}{3}]\):
\[ f(x) = \tan x - x - 2, \quad x \in \left[0, \frac{\pi}{3}\right]. \] We find \( f'(x) = \sec^2 x - 1 > 0 \), so \( f(x) \) is increasing in the interval. \[ f_{\text{min}} = f(0) = -2 = \beta, \] \[ f_{\text{max}} = f\left(\frac{\pi}{3}\right) = \sqrt{3} - \frac{\pi}{3} - 2 = \alpha. \]
Step 5: Calculate \((3\alpha + \pi)^2 + \beta^2\):
\[ (3\alpha + \pi)^2 + \beta^2 = \left(3\left(\sqrt{3} - \frac{\pi}{3} - 2\right) + \pi\right)^2 + (-2)^2. \] Simplifying, we get: \[ \gamma + \delta\sqrt{3} = 67 - 36\sqrt{3}. \] Therefore, \( \gamma = 67 \) and \( \delta = -36 \).
Step 6: Calculate \( \gamma + \delta \):
\[ \gamma + \delta = 67 - 36 = 31. \]
Answer: 31
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: