Rewriting the given equation:
\[ \frac{dy}{dx} + y \frac{2x^3 + 8x}{(x^2 + 4)^2} = \frac{2}{(x^2 + 4)^2}. \]
This is a linear differential equation in the form: \[ \frac{dy}{dx} + P(x)y = Q(x), \] where \( P(x) = \frac{2x^3 + 8x}{(x^2 + 4)^2} \) and \( Q(x) = \frac{2}{(x^2 + 4)^2} \).
The integrating factor (IF) is: \[ \text{IF} = e^{\int P(x) \, dx} = e^{\int \frac{2x}{x^2 + 4} \, dx}. \]
Simplify: \[ \int \frac{2x}{x^2 + 4} \, dx = \ln(x^2 + 4). \] Thus: \[ \text{IF} = e^{\ln(x^2 + 4)} = x^2 + 4. \]
Multiply through by the integrating factor:
\[ y(x^2 + 4) = \int \frac{2}{(x^2 + 4)^2} \cdot (x^2 + 4) \, dx. \]
Simplify the integral: \[ \int \frac{2}{x^2 + 4} \, dx = \int \frac{2}{x^2 + 2^2} \, dx = \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right). \]
Thus: \[ y(x^2 + 4) = \tan^{-1} \left( \frac{x}{2} \right) + c. \]
Using the initial condition \( y(0) = 0 \): \[ 0 \cdot (0^2 + 4) = \tan^{-1} \left( \frac{0}{2} \right) + c \implies c = 0. \]
Therefore: \[ y(x^2 + 4) = \tan^{-1} \left( \frac{x}{2} \right). \]
At \( x = 2 \):
\[ y(4 + 4) = \tan^{-1}(1) = \frac{\pi}{4}. \]
Thus: \[ y(2) = \frac{\pi}{32}. \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: