We are given the differential equation:
\[\frac{dy}{dx} = 2x(x + y)^3 - x(x + y) - 1\]
Let \( x + y = t \). Therefore, we have:
\[\frac{dt}{dx} = 2xt^3 - xt - 1\]
This simplifies to:
\[\frac{dt}{dx} = t^2 \quad \text{and} \quad \frac{dt}{dx} = x^2 \text{ for } x = 0\]
Now solve the equation:
\[\int \frac{dz}{2(2z - z)} = \int x dx\]
After solving:
\[\ln \left( \frac{z - 1}{z} \right) = x^2 + k\]
Thus, \( z = \frac{1}{2 - \sqrt{e}} \).
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: