We are given the differential equation:
\[\frac{dy}{dx} = 2x(x + y)^3 - x(x + y) - 1\]
Let \( x + y = t \). Therefore, we have:
\[\frac{dt}{dx} = 2xt^3 - xt - 1\]
This simplifies to:
\[\frac{dt}{dx} = t^2 \quad \text{and} \quad \frac{dt}{dx} = x^2 \text{ for } x = 0\]
Now solve the equation:
\[\int \frac{dz}{2(2z - z)} = \int x dx\]
After solving:
\[\ln \left( \frac{z - 1}{z} \right) = x^2 + k\]
Thus, \( z = \frac{1}{2 - \sqrt{e}} \).
Given the differential equation \( \frac{dy}{dx} = 2x(x + y)^3 - x(x + y) - 1 \) with \( y(0) = 1 \), we need to find \( \left( \frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right) \right)^2 \).
When a differential equation involves \( x+y \) repeatedly, a substitution \( t = x + y \) can simplify it. Then \( \frac{dt}{dx} = 1 + \frac{dy}{dx} \), which can be used to transform the equation into a separable or simpler form.
Step 1: Substitute \( t = x + y \). Then \( \frac{dt}{dx} = 1 + \frac{dy}{dx} \).
From the given equation:
\[ \frac{dy}{dx} = 2x t^3 - x t - 1 \]
So:
\[ \frac{dt}{dx} = 1 + \left( 2x t^3 - x t - 1 \right) = 2x t^3 - x t \] \[ \frac{dt}{dx} = x t (2 t^2 - 1) \]
Step 2: Separate variables and integrate.
\[ \frac{dt}{t(2 t^2 - 1)} = x \, dx \]
Factor the denominator: \( 2 t^2 - 1 = 2\left(t^2 - \frac12\right) \).
Use partial fractions for \( \frac{1}{t(2 t^2 - 1)} \).
Let \( \frac{1}{t(2 t^2 - 1)} = \frac{A}{t} + \frac{B t + C}{2 t^2 - 1} \).
Multiply through by \( t(2 t^2 - 1) \):
\[ 1 = A(2 t^2 - 1) + (B t + C) t = 2A t^2 - A + B t^2 + C t \] \[ 1 = (2A + B) t^2 + C t - A \]
Comparing coefficients:
\( 2A + B = 0 \) … (1)
\( C = 0 \) … (2)
\( -A = 1 \Rightarrow A = -1 \) … (3)
From (1): \( 2(-1) + B = 0 \Rightarrow B = 2 \).
Thus:
\[ \frac{1}{t(2 t^2 - 1)} = -\frac{1}{t} + \frac{2 t}{2 t^2 - 1} \]
Step 3: Integrate both sides.
\[ \int \left( -\frac{1}{t} + \frac{2 t}{2 t^2 - 1} \right) dt = \int x \, dx \] \[ - \ln |t| + \frac12 \ln |2 t^2 - 1| = \frac{x^2}{2} + C \]
Rewriting:
\[ \ln \left| \frac{\sqrt{2 t^2 - 1}}{t} \right| = \frac{x^2}{2} + C \] \[ \frac{\sqrt{2 t^2 - 1}}{t} = K e^{x^2 / 2}, \quad K = \pm e^C \]
Step 4: Use initial condition \( y(0) = 1 \) ⇒ \( t(0) = 0 + 1 = 1 \).
\[ \frac{\sqrt{2 (1)^2 - 1}}{1} = K e^{0} \Rightarrow \frac{\sqrt{1}}{1} = K \Rightarrow K = 1 \]
So:
\[ \frac{\sqrt{2 t^2 - 1}}{t} = e^{x^2 / 2} \] \[ \sqrt{2 t^2 - 1} = t e^{x^2 / 2} \]
Step 5: Square both sides:
\[ 2 t^2 - 1 = t^2 e^{x^2} \] \[ 2 t^2 - t^2 e^{x^2} = 1 \] \[ t^2 (2 - e^{x^2}) = 1 \] \[ t^2 = \frac{1}{2 - e^{x^2}} \]
Recall \( t = x + y \).
Step 6: Evaluate \( \left( \frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right) \right)^2 \).
Let \( x_0 = \frac{1}{\sqrt{2}} \), then \( t_0 = x_0 + y(x_0) \).
\[ t_0^2 = \frac{1}{2 - e^{x_0^2}} = \frac{1}{2 - e^{1/2}} \]
So:
\[ \left( \frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right) \right)^2 = t_0^2 = \frac{1}{2 - \sqrt{e}} \]
Therefore, the required value is \( \mathbf{\frac{1}{2 - \sqrt{e}}} \).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: