We are given the differential equation:
\[\frac{dy}{dx} = 2x(x + y)^3 - x(x + y) - 1\]
Let \( x + y = t \). Therefore, we have:
\[\frac{dt}{dx} = 2xt^3 - xt - 1\]
This simplifies to:
\[\frac{dt}{dx} = t^2 \quad \text{and} \quad \frac{dt}{dx} = x^2 \text{ for } x = 0\]
Now solve the equation:
\[\int \frac{dz}{2(2z - z)} = \int x dx\]
After solving:
\[\ln \left( \frac{z - 1}{z} \right) = x^2 + k\]
Thus, \( z = \frac{1}{2 - \sqrt{e}} \).
Given the differential equation \( \frac{dy}{dx} = 2x(x + y)^3 - x(x + y) - 1 \) with \( y(0) = 1 \), we need to find \( \left( \frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right) \right)^2 \).
When a differential equation involves \( x+y \) repeatedly, a substitution \( t = x + y \) can simplify it. Then \( \frac{dt}{dx} = 1 + \frac{dy}{dx} \), which can be used to transform the equation into a separable or simpler form.
Step 1: Substitute \( t = x + y \). Then \( \frac{dt}{dx} = 1 + \frac{dy}{dx} \).
From the given equation:
\[ \frac{dy}{dx} = 2x t^3 - x t - 1 \]
So:
\[ \frac{dt}{dx} = 1 + \left( 2x t^3 - x t - 1 \right) = 2x t^3 - x t \] \[ \frac{dt}{dx} = x t (2 t^2 - 1) \]
Step 2: Separate variables and integrate.
\[ \frac{dt}{t(2 t^2 - 1)} = x \, dx \]
Factor the denominator: \( 2 t^2 - 1 = 2\left(t^2 - \frac12\right) \).
Use partial fractions for \( \frac{1}{t(2 t^2 - 1)} \).
Let \( \frac{1}{t(2 t^2 - 1)} = \frac{A}{t} + \frac{B t + C}{2 t^2 - 1} \).
Multiply through by \( t(2 t^2 - 1) \):
\[ 1 = A(2 t^2 - 1) + (B t + C) t = 2A t^2 - A + B t^2 + C t \] \[ 1 = (2A + B) t^2 + C t - A \]
Comparing coefficients:
\( 2A + B = 0 \) … (1)
\( C = 0 \) … (2)
\( -A = 1 \Rightarrow A = -1 \) … (3)
From (1): \( 2(-1) + B = 0 \Rightarrow B = 2 \).
Thus:
\[ \frac{1}{t(2 t^2 - 1)} = -\frac{1}{t} + \frac{2 t}{2 t^2 - 1} \]
Step 3: Integrate both sides.
\[ \int \left( -\frac{1}{t} + \frac{2 t}{2 t^2 - 1} \right) dt = \int x \, dx \] \[ - \ln |t| + \frac12 \ln |2 t^2 - 1| = \frac{x^2}{2} + C \]
Rewriting:
\[ \ln \left| \frac{\sqrt{2 t^2 - 1}}{t} \right| = \frac{x^2}{2} + C \] \[ \frac{\sqrt{2 t^2 - 1}}{t} = K e^{x^2 / 2}, \quad K = \pm e^C \]
Step 4: Use initial condition \( y(0) = 1 \) ⇒ \( t(0) = 0 + 1 = 1 \).
\[ \frac{\sqrt{2 (1)^2 - 1}}{1} = K e^{0} \Rightarrow \frac{\sqrt{1}}{1} = K \Rightarrow K = 1 \]
So:
\[ \frac{\sqrt{2 t^2 - 1}}{t} = e^{x^2 / 2} \] \[ \sqrt{2 t^2 - 1} = t e^{x^2 / 2} \]
Step 5: Square both sides:
\[ 2 t^2 - 1 = t^2 e^{x^2} \] \[ 2 t^2 - t^2 e^{x^2} = 1 \] \[ t^2 (2 - e^{x^2}) = 1 \] \[ t^2 = \frac{1}{2 - e^{x^2}} \]
Recall \( t = x + y \).
Step 6: Evaluate \( \left( \frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right) \right)^2 \).
Let \( x_0 = \frac{1}{\sqrt{2}} \), then \( t_0 = x_0 + y(x_0) \).
\[ t_0^2 = \frac{1}{2 - e^{x_0^2}} = \frac{1}{2 - e^{1/2}} \]
So:
\[ \left( \frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right) \right)^2 = t_0^2 = \frac{1}{2 - \sqrt{e}} \]
Therefore, the required value is \( \mathbf{\frac{1}{2 - \sqrt{e}}} \).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 