Solution: Rewrite the differential equation and solve by separation of variables:
\[ \frac{dy}{dx} = \frac{xy + \left(x^3 + 2\right)\sqrt{1 - x^2}}{1 - x^2} \]
Using integration factors and simplifying, we obtain:
\[ y = \sqrt{3} \left(\frac{65}{32}\right) \]
where \( m = 65 \) and \( n = 32 \), giving \( m + n = 97 \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: