Given the differential equation: \[ \sec^2 y \frac{dy}{dx} + 2x \sin y \sec y = x^3 \cos y. \]
Rearranging terms: \[ \sec^2 y \frac{dy}{dx} + 2x \tan y = x^3. \] Let \( t = \tan y \).
Then: \[ \sec^2 y \frac{dy}{dx} = \frac{dt}{dx}. \]
Substituting into the equation: \[ \frac{dt}{dx} + 2xt = x^3. \]
This is a linear first-order differential equation.
To solve it, we find the integrating factor (IF): \[ \text{IF} = e^{\int 2x dx} = e^{x^2}. \]
Multiplying the entire equation by the integrating factor: \[ e^{x^2} \frac{dt}{dx} + 2x t e^{x^2} = x^3 e^{x^2}. \]
This simplifies to: \[ \frac{d}{dx} (t e^{x^2}) = x^3 e^{x^2}. \]
Integrating both sides: \[ t e^{x^2} = \int x^3 e^{x^2} \, dx. \]
Using the substitution \( z = x^2, \, dz = 2x dx \): \[ \int x^3 e^{x^2} \, dx = \frac{1}{2} \int z e^z \, dz. \]
Integrating by parts: \[ \int z e^z \, dz = e^z (z - 1), \]
so: \[ \frac{1}{2} \int z e^z \, dz = \frac{1}{2} e^{x^2} (x^2 - 1). \]
Thus: \[ t e^{x^2} = \frac{1}{2} e^{x^2} (x^2 - 1) + C. \]
Dividing by \( e^{x^2} \): \[ t = \frac{1}{2} (x^2 - 1) + C e^{-x^2}. \]
Recalling that \( t = \tan y \),
we have: \[ \tan y = \frac{1}{2} (x^2 - 1) + C e^{-x^2}. \]
Using the initial condition \( y(1) = 0 \): \[ \tan 0 = \frac{1}{2} (1^2 - 1) + C e^{-1^2}, \] \[ 0 = 0 + C e^{-1} \implies C = 0. \]
Thus: \[ \tan y = \frac{1}{2} (x^2 - 1). \]
To find \( y(\sqrt{3}) \): \[ \tan y = \frac{1}{2} ((\sqrt{3})^2 - 1) = \frac{1}{2} (3 - 1) = 1. \]
Therefore: \[ y = \tan^{-1} (1) = \frac{\pi}{4}. \]
Therefore: \[ \frac{\pi}{4}. \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :