\( \sec^2 y \dfrac{dy}{dx} + 2x \sin y \sec y = x^3 \cos y \sec y \)
\( \sec^2 y \dfrac{dy}{dx} + 2x \tan y = x^3 \)
\( \tan y = t \Rightarrow \sec^2 y \dfrac{dy}{dx} = \dfrac{dt}{dx} \)
\( \dfrac{dt}{dx} + 2xt = x^3, \, \text{if} \, e^{2x} dx = e^{x^2} \)
\( te^{x^2} = \int x^3 \cdot e^{x^2} dx + c \)
\( x^2 = Z \Rightarrow t \cdot e^Z = \dfrac{1}{2} \int e^Z \cdot Z dZ = \dfrac{1}{2} \left[ e^Z \cdot Z - e^2 \right] + c \)
\( 2 \tan y = (x^2 - 1) + 2c e^{-x^2} \)
\( y(1) = 0 \Rightarrow c = 0 \Rightarrow y(\sqrt{3}) = \dfrac{\pi}{4} \)
Given the differential equation: \[ \sec^2 y \frac{dy}{dx} + 2x \sin y \sec y = x^3 \cos y. \]
Rearranging terms: \[ \sec^2 y \frac{dy}{dx} + 2x \tan y = x^3. \] Let \( t = \tan y \).
Then: \[ \sec^2 y \frac{dy}{dx} = \frac{dt}{dx}. \]
Substituting into the equation: \[ \frac{dt}{dx} + 2xt = x^3. \]
This is a linear first-order differential equation.
To solve it, we find the integrating factor (IF): \[ \text{IF} = e^{\int 2x dx} = e^{x^2}. \]
Multiplying the entire equation by the integrating factor: \[ e^{x^2} \frac{dt}{dx} + 2x t e^{x^2} = x^3 e^{x^2}. \]
This simplifies to: \[ \frac{d}{dx} (t e^{x^2}) = x^3 e^{x^2}. \]
Integrating both sides: \[ t e^{x^2} = \int x^3 e^{x^2} \, dx. \]
Using the substitution \( z = x^2, \, dz = 2x dx \): \[ \int x^3 e^{x^2} \, dx = \frac{1}{2} \int z e^z \, dz. \]
Integrating by parts: \[ \int z e^z \, dz = e^z (z - 1), \]
so: \[ \frac{1}{2} \int z e^z \, dz = \frac{1}{2} e^{x^2} (x^2 - 1). \]
Thus: \[ t e^{x^2} = \frac{1}{2} e^{x^2} (x^2 - 1) + C. \]
Dividing by \( e^{x^2} \): \[ t = \frac{1}{2} (x^2 - 1) + C e^{-x^2}. \]
Recalling that \( t = \tan y \),
we have: \[ \tan y = \frac{1}{2} (x^2 - 1) + C e^{-x^2}. \]
Using the initial condition \( y(1) = 0 \): \[ \tan 0 = \frac{1}{2} (1^2 - 1) + C e^{-1^2}, \] \[ 0 = 0 + C e^{-1} \implies C = 0. \]
Thus: \[ \tan y = \frac{1}{2} (x^2 - 1). \]
To find \( y(\sqrt{3}) \): \[ \tan y = \frac{1}{2} ((\sqrt{3})^2 - 1) = \frac{1}{2} (3 - 1) = 1. \]
Therefore: \[ y = \tan^{-1} (1) = \frac{\pi}{4}. \]
Therefore: \[ \frac{\pi}{4}. \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
