Step 1: Recognize type of equation.
The equation is a Cauchy–Euler equation:
\[
x^{2}y'' + xy' - y = 0.
\]
Step 2: Assume trial solution.
Let $y = x^{m}$. Then:
\[
y' = m x^{m-1}, y'' = m(m-1)x^{m-2}.
\]
Substitute:
\[
x^{2}y'' + xy' - y = m(m-1)x^{m} + mx^{m} - x^{m} = (m^{2}-1)x^{m}.
\]
So, $m^{2}-1=0 \;\Rightarrow\; m=\pm 1$.
Step 3: General solution.
Thus,
\[
y(x) = C_{1}x + C_{2}x^{-1}.
\]
Step 4: Apply initial conditions.
At $x=1$:
\[y(1)=C_{1}\cdot 1 + C_{2}\cdot 1 = C_{1}+C_{2}=0 \;\Rightarrow\; C_{2}=-C_{1}.\]
Derivative:
\[
y'(x) = C_{1} - C_{2}x^{-2}.\]
At $x=1$:
\[y'(1)=C_{1}-C_{2}=2.\]
Since $C_{2}=-C_{1}$, we get $y'(1)=C_{1}-(-C_{1})=2C_{1}=2$, so $C_{1}=1, C_{2}=-1$.
Step 5: Explicit solution.
\[
y(x)=x - \frac{1}{x}.
\]
Then
\[
y'(x)=1+\frac{1}{x^{2}}.
\]
At $x=\tfrac{1}{2}$:
\[
y'\!\left(\tfrac{1}{2}\right)=1+\left(\tfrac{1}{(1/2)^{2}}\right)=1+4=5.
\]
Final Answer: $\boxed{5}$