Let \(y(x)\) be the solution of the differential equation
\[
x\frac{dy}{dx}= y + x^2\cot x,
\quad y\!\left(\frac{\pi}{2}\right)=\frac{\pi}{2}.
\]
The value of \(6y\!\left(\frac{\pi}{6}\right)-8y\!\left(\frac{\pi}{4}\right)\) equals:
Show Hint
For equations of the form \(x\dfrac{dy}{dx}-y=f(x)\),
divide by \(x\) first and look for an integrating factor \(\frac{1}{x}\).