The given differential equation can be solved using the method of integrating factors. The equation is: \(\frac{dy}{dx} + 3x^2y = x^2\). This is a first-order linear differential equation in the standard form \(\frac{dy}{dx} + P(x)y = Q(x)\), with \(P(x) = 3x^2\) and \(Q(x) = x^2\).
First, we find the integrating factor \(\mu(x)\) given by \(\mu(x) = e^{\int P(x)dx} = e^{\int 3x^2dx} = e^{x^3}\).
Multiply the entire differential equation by the integrating factor:
\(e^{x^3}\frac{dy}{dx} + 3x^2e^{x^3}y = x^2e^{x^3}\).
The left-hand side is the derivative of \((e^{x^3}y)\), simplifying to:
\(\frac{d}{dx}(e^{x^3}y) = x^2e^{x^3}\).
Integrating both sides with respect to \(x\):
\(\int \frac{d}{dx}(e^{x^3}y)dx = \int x^2e^{x^3}dx\).
The left side integrates to \(e^{x^3}y\). For the right side, use substitution: let \(u = x^3\), then \(du = 3x^2dx\) or \(x^2dx = \frac{1}{3}du\).
Thus,
\(\int x^2e^{x^3}dx = \int \frac{1}{3}e^udu = \frac{1}{3}e^u + C = \frac{1}{3}e^{x^3} + C\).
Equating both results, we get:
\(e^{x^3}y = \frac{1}{3}e^{x^3} + C\).
Solving for \(y\), we have:
\(y = \frac{1}{3} + Ce^{-x^3}\).
Using the initial condition \(y(0) = 4\), find \(C\):
\(4 = \frac{1}{3} + Ce^0\) which implies \(C = \frac{11}{3}\).
Thus, the solution is \(y(x) = \frac{1}{3} + \frac{11}{3}e^{-x^3}\).
Calculating \(\lim_{x \to \infty} y(x)\):
As \(x \rightarrow \infty\), \(e^{-x^3} \rightarrow 0\), so \(\lim_{x \to \infty} y(x) = \frac{1}{3}\).
The computed limit, \(\frac{1}{3} = 0.3333\).
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.