Step 1: Translate statement into differential equation.
Rate of change proportional to population:
\[ \frac{dy}{dt}\propto y \Rightarrow \frac{dy}{dt}=ky \]
Step 2: Solve the differential equation.
\[ \frac{dy}{y}=k\,dt \]
Integrate:
\[ \ln|y|=kt+C \]
\[ y=Ce^{kt} \]
Step 3: Use the condition that population never increases.
Population never increases \(\Rightarrow \frac{dy}{dt}\le 0\).
Since \(y>0\), this implies:
\[ k\le 0 \]
Step 4: Identify correct form among options.
The form \(y=Ce^{kt}\) with \(C\ge 0\) and \(k\le 0\) matches option (B).
Final Answer:
\[ \boxed{\text{(B) } y=Ce^{kt}\text{ where }C\ge 0,\ k\le 0} \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :