The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is:
In all cases, horizontal lines remain parallel to the x-axis. It never intersects the x-axis but only intersects the y-axis. The value of x can change, but y always tends to be constant for horizontal lines.
The equation for the vertical line is represented as x=a,
Here, ‘a’ is the point where this line intersects the x-axis.
x is the respective coordinates of any point lying on the line, this represents that the equation is not dependent on y.
⇒ Horizontal lines and vertical lines are perpendicular to each other.