Given the equations:
\(4(x^2+y^2+z^2)=a\) (1)
\(4(x-y-z)=3+a\) (2)
We need to find the value of \(a\).
First, let's solve equation (2) for \(x\):
\(4x - 4y - 4z = 3 + a\)
Rearranging gives:
\(4x = 3 + a + 4y + 4z\)
\(x = \frac{3+a+4y+4z}{4}\) (3)
Now substitute \(x\) from equation (3) into equation (1):
\(4\left(\left(\frac{3+a+4y+4z}{4}\right)^2 + y^2 + z^2\right) = a\)
Expanding and simplifying:
\(\left(\frac{3+a+4y+4z}{4}\right)^2 = \frac{(3+a+4y+4z)^2}{16}\)
Thus, equation (1) becomes:
\(4\left(\frac{(3+a+4y+4z)^2}{16} + y^2 + z^2\right) = a\)
Simplify the left-hand side:
\(\frac{(3+a+4y+4z)^2}{4} + 4(y^2 + z^2) = a\)
We know from (1):
\(4(y^2+z^2)=a-x^2\)
Substitute:
\(\frac{(3+a+4y+4z)^2}{4} + a-x^2 = a\)
Let \(x=y=z\):
\(a=4(3x^2)\Rightarrow a=12x^2\)
From (2):
\(4(0)=3+a \Rightarrow a=3\)
Thus, the value of \(a\) is: \(3\).
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: