Let \( X(\omega) \) be the Fourier transform of the signal
\( x(t) = e^{-4t}\cos(t), \; -\infty < t < \infty \).
The value of the derivative of \( X(\omega) \) at \( \omega = 0 \) is _____________
(rounded off to 1 decimal place).
Given: \[ x(t) = e^{-4t} \cos(t) \] Step 1: Fourier transform: \[ X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} \, dt \] Step 2: Derivative of \( X(\omega) \): \[ \frac{dX(\omega)}{d\omega} = \int_{-\infty}^{\infty} (-jt)x(t)e^{-j\omega t} \, dt \] At \( \omega = 0 \): \[ \frac{dX(0)}{d\omega} = \int_{-\infty}^{\infty} (-jt)x(t) \, dt \] Step 3: Simplification: Given that \( x(t) \) is an even signal, the integral evaluates to \( 0 \).
Final Answer: \( 0 \)
A continuous time periodic signal \( x(t) \) is given by: \[ x(t) = 1 + 2\cos(2\pi t) + 2\cos(4\pi t) + 2\cos(6\pi t) \] If \( T \) is the period of \( x(t) \), then evaluate: \[ \frac{1}{T} \int_0^T |x(t)|^2 \, dt \quad {(round off to the nearest integer).} \]
The maximum percentage error in the equivalent resistance of two parallel connected resistors of 100 \( \Omega \) and 900 \( \Omega \), with each having a maximum 5% error, is: \[ {(round off to nearest integer value).} \]
Consider a distribution feeder, with \( R/X \) ratio of 5. At the receiving end, a 350 kVA load is connected. The maximum voltage drop will occur from the sending end to the receiving end, when the power factor of the load is: \[ {(round off to three decimal places).} \]
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
The induced emf in a 3.3 kV, 4-pole, 3-phase star-connected synchronous motor is considered to be equal and in phase with the terminal voltage under no-load condition. On application of a mechanical load, the induced emf phasor is deflected by an angle of \( 2^\circ \) mechanical with respect to the terminal voltage phasor. If the synchronous reactance is \( 2 \, \Omega \), and stator resistance is negligible, then the motor armature current magnitude, in amperes, during loaded condition is closest to: \[ {(round off to two decimal places).} \]