Let:
Since the points \( (0, a), (1, b), (2, c), (3, d), (4, e) \) lie on a straight line, the probabilities form an Arithmetic Progression (A.P.).
By the probability sum rule:
\[ a + b + c + d + e = 1 \]
The mean of \( X \) is:
\[ \mu = \sum X P(X) = 0 \cdot a + 1 \cdot b + 2 \cdot c + 3 \cdot d + 4 \cdot e = b + 2c + 3d + 4e \]
Given that \( \mu = \frac{5}{2} \), we get:
\[ b + 2c + 3d + 4e = \frac{5}{2} \]
Since \( a, b, c, d, e \) are in A.P., they satisfy:
\[ b - a = c - b = d - c = e - d = k \]
Rewriting in terms of \( a \) and \( k \):
Using total probability condition:
\[ a + (a + k) + (a + 2k) + (a + 3k) + (a + 4k) = 1 \]
\[ 5a + 10k = 1 \Rightarrow a + 2k = \frac{1}{5} \]
Using mean condition:
\[ (a + k) + 2(a + 2k) + 3(a + 3k) + 4(a + 4k) = \frac{5}{2} \]
\[ 10a + 30k = \frac{5}{2} \Rightarrow 2a + 6k = \frac{1}{4} \]
Solving equations:
\[ 2k = \frac{5}{20} - \frac{8}{20} = -\frac{3}{20} \Rightarrow k = -\frac{3}{40} \]
\[ a + 2 \times -\frac{3}{40} = \frac{1}{5} \Rightarrow a = \frac{7}{20} \]
\[ b = a + k = \frac{7}{20} - \frac{3}{40} = \frac{11}{40} \]
\[ c = a + 2k = \frac{7}{20} = \frac{14}{40} \]
\[ d = a + 3k = \frac{7}{20} - \frac{9}{40} = \frac{1}{8} \]
\[ e = a + 4k = \frac{7}{20} - \frac{12}{40} = \frac{1}{10} \]
Variance formula:
\[ \sigma^2 = \sum X^2 P(X) - (\text{mean})^2 \]
\[ \sum X^2 P(X) = 0 + \frac{11}{40} + 4 \times \frac{7}{20} + 9 \times \frac{1}{8} + 16 \times \frac{1}{10} \]
\[ = \frac{11}{40} + \frac{28}{40} + \frac{45}{40} + \frac{64}{40} = \frac{148}{40} \]
Mean squared:
\[ \mu^2 = \left(\frac{5}{2}\right)^2 = \frac{25}{4} \]
\[ \sigma^2 = \frac{148}{40} - \frac{25}{10} = \frac{37}{10} - \frac{25}{10} = \frac{12}{10} \]
\[ 24 \times \frac{12}{10} = 42 \]