\[ P(X = n) = \begin{cases} \frac{-2c}{n}, & n = -1, -2 \\ d, & n = 0 \\ \frac{cn}{n}, & n = 1, 2 \\ 0, & \text{otherwise} \end{cases} \]
where \( c \) and \( d \) are positive real numbers. If \( P(|X| \leq 1) = \frac{3}{4} \), then \( E(X) \) equals\[ P(X = -1) + P(X = 0) + P(X = 1) = \frac{3}{4} \]
Substitute the values from the PMF and solve for \( c \) and \( d \).\[ E(X) = \sum_{n} n \cdot P(X = n) \]
Substitute the PMF values and solve for \( E(X) \). The result is \( E(X) = \frac{1}{3} \).