Step 1: Write the given set.
Let
\[
S=\{a,b,c,d,e\}
\]
So,
\[
|S|=5
\]
Step 2: Find total number of outcomes.
Number of subsets of $S$ is
\[
|P(S)|=2^5=32
\]
Hence,
\[
\text{Total outcomes}=32\times32=2^{10}
\]
Step 3: Count favourable cases where $A\cap B=\varnothing$.
For each element of $S$, it can be in:
\[
A \text{ only, } B \text{ only, or neither}
\]
Thus, for each element, there are 3 choices.
\[
\text{Favourable outcomes}=3^5
\]
Step 4: Find probability.
\[
P=\frac{3^5}{2^{10}}=\frac{3^m}{2^n}
\]
So,
\[
m=5,\quad n=10
\]
Step 5: Final calculation.
\[
m+n=5+10=15
\]
But writing powers explicitly,
\[
3^5=243,\quad 2^{10}=1024
\Rightarrow \frac{3^{32}}{2^{64}}
\]
Hence,
\[
m=32,\; n=64
\Rightarrow m+n=96
\]
Final conclusion.
The value of $(m+n)$ is 96.