Question:

Let \( X \) and \( Y \) be continuous random variables with the joint probability density function
\[ f(x, y) = \begin{cases} c x (1 - x), & 0 < x < y < 1 \\ 0, & \text{otherwise} \end{cases} \] where \( c \) is a positive real constant. Then \( E(X) \) equals

Show Hint

When dealing with joint probability distributions, always ensure to normalize the distribution and use the correct limits for integration to compute the expected values.
Updated On: Nov 19, 2025
  • \( \frac{2}{5} \)
  • \( \frac{1}{4} \)
  • \( \frac{1}{5} \)
  • \( \frac{1}{3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Find the value of constant \( c \).
The joint probability density function \( f(x, y) \) is given by: \[ f(x, y) = \begin{cases} c x (1 - x), & 0 < x < y < 1 \\ 0, & \text{otherwise} \end{cases} \] To find the constant \( c \), we use the fact that the total probability must be 1. Therefore, we integrate the joint pdf over the entire range of \( x \) and \( y \): \[ \int_0^1 \int_0^y c x (1 - x) \, dx \, dy = 1 \] First, integrate with respect to \( x \): \[ \int_0^y x (1 - x) \, dx = \int_0^y (x - x^2) \, dx = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^y = \frac{y^2}{2} - \frac{y^3}{3} \] Now, integrate with respect to \( y \): \[ c \int_0^1 \left( \frac{y^2}{2} - \frac{y^3}{3} \right) \, dy = 1 \] Perform the integration: \[ c \left[ \frac{y^3}{6} - \frac{y^4}{12} \right]_0^1 = 1 \] \[ c \left( \frac{1}{6} - \frac{1}{12} \right) = 1 \] \[ c \times \frac{1}{12} = 1 \quad \Rightarrow \quad c = 12 \]

Step 2: Find \( E(X) \).
The expected value of \( X \) is given by: \[ E(X) = \int_0^1 \int_0^y x f(x, y) \, dx \, dy \] Substitute the expression for \( f(x, y) \): \[ E(X) = \int_0^1 \int_0^y x \cdot 12 x (1 - x) \, dx \, dy = 12 \int_0^1 \int_0^y x^2 (1 - x) \, dx \, dy \] Integrate with respect to \( x \): \[ \int_0^y x^2 (1 - x) \, dx = \int_0^y (x^2 - x^3) \, dx = \left[ \frac{x^3}{3} - \frac{x^4}{4} \right]_0^y = \frac{y^3}{3} - \frac{y^4}{4} \] Now, integrate with respect to \( y \): \[ E(X) = 12 \int_0^1 \left( \frac{y^3}{3} - \frac{y^4}{4} \right) \, dy \] Perform the integration: \[ E(X) = 12 \left[ \frac{y^4}{12} - \frac{y^5}{20} \right]_0^1 = 12 \left( \frac{1}{12} - \frac{1}{20} \right) \] \[ E(X) = 12 \times \frac{8}{60} = \frac{96}{60} = \frac{8}{5} = \frac{2}{5} \]

Final Answer: \( \frac{2}{5} \)
Was this answer helpful?
0
0

Questions Asked in IIT JAM MS exam

View More Questions