Step 1: Find the value of constant \( c \).
The joint probability density function \( f(x, y) \) is given by:
\[
f(x, y) = \begin{cases}
c x (1 - x), & 0 < x < y < 1 \\
0, & \text{otherwise}
\end{cases}
\]
To find the constant \( c \), we use the fact that the total probability must be 1. Therefore, we integrate the joint pdf over the entire range of \( x \) and \( y \):
\[
\int_0^1 \int_0^y c x (1 - x) \, dx \, dy = 1
\]
First, integrate with respect to \( x \):
\[
\int_0^y x (1 - x) \, dx = \int_0^y (x - x^2) \, dx = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^y = \frac{y^2}{2} - \frac{y^3}{3}
\]
Now, integrate with respect to \( y \):
\[
c \int_0^1 \left( \frac{y^2}{2} - \frac{y^3}{3} \right) \, dy = 1
\]
Perform the integration:
\[
c \left[ \frac{y^3}{6} - \frac{y^4}{12} \right]_0^1 = 1
\]
\[
c \left( \frac{1}{6} - \frac{1}{12} \right) = 1
\]
\[
c \times \frac{1}{12} = 1 \quad \Rightarrow \quad c = 12
\]
Step 2: Find \( E(X) \).
The expected value of \( X \) is given by:
\[
E(X) = \int_0^1 \int_0^y x f(x, y) \, dx \, dy
\]
Substitute the expression for \( f(x, y) \):
\[
E(X) = \int_0^1 \int_0^y x \cdot 12 x (1 - x) \, dx \, dy = 12 \int_0^1 \int_0^y x^2 (1 - x) \, dx \, dy
\]
Integrate with respect to \( x \):
\[
\int_0^y x^2 (1 - x) \, dx = \int_0^y (x^2 - x^3) \, dx = \left[ \frac{x^3}{3} - \frac{x^4}{4} \right]_0^y = \frac{y^3}{3} - \frac{y^4}{4}
\]
Now, integrate with respect to \( y \):
\[
E(X) = 12 \int_0^1 \left( \frac{y^3}{3} - \frac{y^4}{4} \right) \, dy
\]
Perform the integration:
\[
E(X) = 12 \left[ \frac{y^4}{12} - \frac{y^5}{20} \right]_0^1 = 12 \left( \frac{1}{12} - \frac{1}{20} \right)
\]
\[
E(X) = 12 \times \frac{8}{60} = \frac{96}{60} = \frac{8}{5} = \frac{2}{5}
\]
Final Answer: \( \frac{2}{5} \)