Step 1: Understand the problem setup.
We are given a random sample \( X_1, X_2, X_3, X_4 \) from a discrete distribution with two possible values \( X = 0 \) and \( X = 1 \), with probabilities \( P(X = 0) = 1 - p \) and \( P(X = 1) = p \).
The test rejects the null hypothesis \( H_0 \) if the sum of the random sample exceeds 3, i.e., if \( X_1 + X_2 + X_3 + X_4>3 \). We are asked to find the size \( \alpha \) and the power \( \gamma \) of the test, and then compute \( \alpha + \gamma \).
Step 2: Calculate the size of the test (\( \alpha \)).
The size \( \alpha \) is the probability of rejecting \( H_0 \) when \( H_0 \) is true. Under \( H_0 : p = \frac{3}{4} \), the number of successes \( X_1 + X_2 + X_3 + X_4 \) follows a binomial distribution with parameters \( n = 4 \) and \( p = \frac{3}{4} \). We reject \( H_0 \) if \( X_1 + X_2 + X_3 + X_4>3 \).
Thus, we need to compute the probability of getting 4 successes, which is:
\[
\alpha = P(X_1 + X_2 + X_3 + X_4>3 \mid p = \frac{3}{4}).
\]
The probability mass function of the binomial distribution is:
\[
P(X = k) = \binom{4}{k} \left( \frac{3}{4} \right)^k \left( \frac{1}{4} \right)^{4-k}.
\]
For \( X_1 + X_2 + X_3 + X_4 = 4 \), we have:
\[
P(X_1 + X_2 + X_3 + X_4 = 4) = \binom{4}{4} \left( \frac{3}{4} \right)^4 = 1 \times \left( \frac{3}{4} \right)^4 = \frac{81}{256}.
\]
Thus, \( \alpha = P(X_1 + X_2 + X_3 + X_4 = 4) = \frac{81}{256} \).
Step 3: Calculate the power of the test (\( \gamma \)).
The power \( \gamma \) is the probability of rejecting \( H_0 \) when \( H_1 \) is true. Under \( H_1 : p = \frac{4}{5} \), the number of successes \( X_1 + X_2 + X_3 + X_4 \) follows a binomial distribution with parameters \( n = 4 \) and \( p = \frac{4}{5} \). We reject \( H_0 \) if \( X_1 + X_2 + X_3 + X_4>3 \).
Thus, we need to compute the probability of getting 4 successes, which is:
\[
\gamma = P(X_1 + X_2 + X_3 + X_4>3 \mid p = \frac{4}{5}).
\]
For \( X_1 + X_2 + X_3 + X_4 = 4 \), we have:
\[
P(X_1 + X_2 + X_3 + X_4 = 4) = \binom{4}{4} \left( \frac{4}{5} \right)^4 = 1 \times \left( \frac{4}{5} \right)^4 = \frac{256}{625}.
\]
Thus, \( \gamma = P(X_1 + X_2 + X_3 + X_4 = 4) = \frac{256}{625} \).
Step 4: Calculate \( \alpha + \gamma \).
Now, we can compute:
\[
\alpha + \gamma = \frac{81}{256} + \frac{256}{625}.
\]
Finding a common denominator:
\[
\alpha + \gamma = \frac{81}{256} + \frac{256}{625} = \frac{50625 + 65536}{160000} = \frac{116161}{160000}.
\]
Thus, \( \alpha + \gamma \approx 0.726 \).
Final Answer:
\[
\boxed{0.73}.
\]