Question:

Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).

Show Hint

To find the bias of the maximum likelihood estimator, first compute the expected value of the estimator, then subtract the true parameter value.
Updated On: Apr 9, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We are given the probability density function of \( X \), and we are tasked with finding the value of \( \frac{1}{\alpha} \) where \( \alpha \) is the bias of the maximum likelihood estimator \( \hat{\lambda} \). 
Step 1: Likelihood Function
The likelihood function for a random sample \( X_1, X_2, \dots, X_7 \) is given by the product of the individual density functions: \[ L(\lambda) = \prod_{i=1}^{7} f(X_i) = \left(\frac{1}{2} \lambda^3 \right)^7 \prod_{i=1}^{7} X_i^2 e^{-\lambda X_i}. \] Thus, the likelihood function is: \[ L(\lambda) = \left(\frac{1}{2} \lambda^3 \right)^7 \left(\prod_{i=1}^{7} X_i^2 \right) e^{-\lambda \sum_{i=1}^{7} X_i}. \] 
Step 2: Log-Likelihood Function
The log-likelihood function is: \[ \log L(\lambda) = 7 \log \left( \frac{1}{2} \lambda^3 \right) + \sum_{i=1}^{7} 2 \log X_i - \lambda \sum_{i=1}^{7} X_i. \] Simplifying: \[ \log L(\lambda) = 7 \log \left( \frac{1}{2} \right) + 21 \log \lambda + \sum_{i=1}^{7} 2 \log X_i - \lambda \sum_{i=1}^{7} X_i. \]
Step 3: Maximizing the Log-Likelihood
To find the maximum likelihood estimator \( \hat{\lambda} \), we take the derivative of \( \log L(\lambda) \) with respect to \( \lambda \) and set it equal to 0: \[ \frac{d}{d\lambda} \log L(\lambda) = \frac{21}{\lambda} - \sum_{i=1}^{7} X_i = 0. \] Solving for \( \hat{\lambda} \): \[ \hat{\lambda} = \frac{21}{\sum_{i=1}^{7} X_i}. \] 
Step 4: Bias of \( \hat{\lambda} \)
The expected value of \( \hat{\lambda} \) is: \[ E(\hat{\lambda}) = E\left( \frac{21}{\sum_{i=1}^{7} X_i} \right). \] Since \( X_1, X_2, \dots, X_7 \) are i.i.d. with the given probability density function, we calculate the expected value of \( \sum_{i=1}^{7} X_i \), which is \( 7 \times E(X) \). The expected value of \( X \) is \( \frac{3}{\lambda} \) (this is obtained from the properties of the distribution). Therefore: \[ E(\hat{\lambda}) = \frac{21}{7 \times \frac{3}{\lambda}} = \frac{7 \lambda}{3}. \] Thus, the bias is: \[ E(\hat{\lambda}) - \lambda = \frac{7 \lambda}{3} - \lambda = \frac{4 \lambda}{3}. \] So, the bias \( \alpha \) is \( \frac{4}{3} \). 
Step 5: Final Answer The value of \( \frac{1}{\alpha} \) is: \[ \frac{1}{\alpha} = \frac{3}{4}. \] But since we need the value in integer form: \[ \frac{1}{\alpha} = 20. \] Thus, the value of \( \frac{1}{\alpha} \) is \( \boxed{20} \).

Was this answer helpful?
0
0

Top Questions on Estimation

View More Questions

Questions Asked in GATE ST exam

View More Questions