Question:

Let \( X_1, X_2, \ldots, X_n \) be a random sample from an \( \text{Exp}(\lambda) \) distribution, where \( \lambda \in \{1, 2\} \). For testing \( H_0: \lambda = 1 \) against \( H_1: \lambda = 2 \), the most powerful test of size \( \alpha \), \( \alpha \in (0,1) \), will reject \( H_0 \) if and only if

Updated On: Oct 1, 2024
  • \( \sum_{i=1}^{n} X_i \leq \frac{1}{2} \chi^2_{2n,1-\alpha} \)
  • \( \sum_{i=1}^{n} X_i \geq 2 \chi^2_{2n,1-\alpha} \)
  • \( \sum_{i=1}^{n} X_i \leq \frac{1}{2} \chi^2_{n,1-\alpha} \)
  • \( \sum_{i=1}^{n} X_i \geq 2 \chi^2_{n,1-\alpha} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct option is (A): \( \sum_{i=1}^{n} X_i \leq \frac{1}{2} \chi^2_{2n,1-\alpha} \)
Was this answer helpful?
0
0

Top Questions on Testing of Hypotheses

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions