1. Test Statistic: Under \( H_0 \), \( \sum_{i=1}^{10} X_i^2 \sim \chi^2_{10} \). Under \( H_1 \) with \( \sigma^2 = 2 \), \( \sum_{i=1}^{10} X_i^2 \sim \frac{\chi^2_{10}}{2} \).
2. Power of the Test: - The rejection region is \( \sum_{i=1}^{10} X_i^2 > 18.307 \). - Evaluate the probability under \( H_1 \) with \( \sigma^2 = 2 \) using the chi-squared distribution scaled by \( \frac{1}{2} \).
3. Interval for Power \( \beta \): Comparing the cumulative probabilities for the given critical values, \( \beta \) lies in the interval \( (0.50, 0.75) \)