1. Likelihood Function: The probability of observing 3 heads is given by the binomial probability: \[ L(m, p) = \binom{m}{3} p^3 (1-p)^{m-3}. \] 2. Maximum Likelihood Estimation: - Evaluate \( L(m, p) \) for each pair \( (m, p) \) from the possible values: \[ L(3, \frac{3}{4}) > L(5, \frac{1}{4}), \quad L(3, \frac{3}{4}) > L(5, \frac{3}{4}). \] - The pair \( (3, \frac{3}{4}) \) maximizes the likelihood function
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).