Let \( X_1, X_2, \dots, X_n \) be a random sample from a distribution with the probability density function \[ f(x; \theta) = \begin{cases} \theta^2 x e^{-\theta x}, & x > 0, \\ 0, & \text{otherwise}, \end{cases} \] where \( \theta > 0 \) is the unknown parameter. If \( Y = \sum_{i=1}^n X_i \), then which of the following statement(s) is (are) true?
Step 1: Identify the distribution
This is a Gamma distribution: $X_i \sim \text{Gamma}(2, \theta)$ with shape parameter $\alpha = 2$ and rate parameter $\theta$.
Step 2: Find the distribution of $Y$
Since the sum of independent Gamma random variables with the same rate parameter is also Gamma: $$Y = \sum_{i=1}^n X_i \sim \text{Gamma}(2n, \theta)$$
The PDF of $Y$ is: $$f_Y(y;\theta) = \frac{\theta^{2n} y^{2n-1} e^{-\theta y}}{\Gamma(2n)}, \quad y > 0$$
Option (A): $Y$ is a complete sufficient statistic for $\theta$
Sufficiency: By the factorization theorem, the likelihood function is: $$L(\theta; x_1, ..., x_n) = \prod_{i=1}^n \theta^2 x_i e^{-\theta x_i} = \theta^{2n} \left(\prod_{i=1}^n x_i\right) e^{-\theta \sum_{i=1}^n x_i}$$
This can be written as: $$L(\theta; x_1, ..., x_n) = g(Y, \theta) h(x_1, ..., x_n)$$
where $Y = \sum_{i=1}^n x_i$. Thus, $Y$ is a sufficient statistic.
Completeness: The family ${\text{Gamma}(2n, \theta) : \theta > 0}$ is an exponential family with natural parameter $-\theta$ and complete. Therefore, $Y$ is a complete sufficient statistic.
Option (A) is TRUE
Option (B): $\frac{2n}{Y}$ is the UMVUE of $\theta$
First, find $E[Y]$ and $E[1/Y]$:
For $Y \sim \text{Gamma}(2n, \theta)$: $$E[Y] = \frac{2n}{\theta}$$
For the reciprocal, using the formula for the inverse Gamma moment: $$E\left[\frac{1}{Y}\right] = \frac{\theta}{2n - 1}$$ (for $2n > 1$)
Therefore: $$E\left[\frac{2n}{Y}\right] = 2n \cdot \frac{\theta}{2n - 1} = \frac{2n\theta}{2n - 1} \neq \theta$$
So $\frac{2n}{Y}$ is biased.
Option (B) is FALSE
Option (C): $\frac{2n-1}{Y}$ is the UMVUE of $\theta$
From above: $$E\left[\frac{1}{Y}\right] = \frac{\theta}{2n - 1}$$
Therefore: $$E\left[\frac{2n-1}{Y}\right] = (2n-1) \cdot \frac{\theta}{2n - 1} = \theta$$
So $\frac{2n-1}{Y}$ is unbiased.
Since $Y$ is a complete sufficient statistic and $\frac{2n-1}{Y}$ is an unbiased estimator of $\theta$, by the Lehmann-Scheffé theorem, $\frac{2n-1}{Y}$ is the UMVUE of $\theta$.
Option (C) is TRUE
Option (D): $\frac{2n+1}{Y}$ is the UMVUE of $\theta$
$$E\left[\frac{2n+1}{Y}\right] = (2n+1) \cdot \frac{\theta}{2n - 1} = \frac{(2n+1)\theta}{2n - 1} \neq \theta$$
So $\frac{2n+1}{Y}$ is biased.
Option (D) is FALSE
Answer: (A) and (C)
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).