For the linear programming problem: \[ {Maximize} \quad Z = 2x_1 + 4x_2 + 4x_3 - 3x_4 \] subject to \[ \alpha x_1 + x_2 + x_3 = 4, \quad x_1 + \beta x_2 + x_4 = 8, \quad x_1, x_2, x_3, x_4 \geq 0, \] consider the following two statements:
S1: If \( \alpha = 2 \) and \( \beta = 1 \), then \( (x_1, x_2)^T \) forms an optimal basis.
S2: If \( \alpha = 1 \) and \( \beta = 4 \), then \( (x_3, x_2)^T \) forms an optimal basis. Then, which one of the following is correct?
Consider the following regions: \[ S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 4, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] \[ S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 - x_2 \leq 5, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] Then, which of the following is/are TRUE?
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |