Step 1: Write the primal in standard form.
Minimize: $Z = x_1 + 5x_2 + 2x_3$
\[
\text{subject to }
\begin{cases}
x_1 - x_2 \le 1, \\
- x_1 - x_2 - x_3 \le -3, \\
x_i \ge 0.
\end{cases}
\]
This gives one “$\le$” and one “$\ge$” constraint, so the dual will have mixed sign restrictions.
Step 2: Form the dual.
For primal minimization, dual is maximization.
Let $\lambda_1 \ge 0$ for the first constraint and $\lambda_2 \le 0$ for the second (since it was “$\ge$”).
Dual:
\[
\text{Maximize } \quad W = \lambda_1 - 3\lambda_2
\]
subject to
\[
\begin{cases}
\lambda_1 - \lambda_2 \le 1, \\
-\lambda_1 - \lambda_2 \le 5, \\
-\lambda_2 \le 2.
\end{cases}
\]
Step 3: Use complementary slackness.
Active constraints in the primal correspond to nonzero dual variables.
Given $x_1^* = 1, x_2^* = 0, x_3^* = 2$, check primal constraints:
\[
x_1 - x_2 = 1 \text{ (binding)}, \quad x_1 + x_2 + x_3 = 3 \text{ (binding)}.
\]
Hence, both constraints are active, so $\lambda_1^*, \lambda_2^*$ are nonzero.
Step 4: Apply stationarity (dual equality conditions).
For each variable $x_i$:
\[
\begin{cases}
\lambda_1 - \lambda_2 = 1, & \text{(from coefficient of } x_1) \\
-\lambda_1 - \lambda_2 = 5, & \text{(from coefficient of } x_2) \\
-\lambda_2 = 2. & \text{(from coefficient of } x_3)
\end{cases}
\]
From the last equation, $\lambda_2 = -2$. Substitute in the first:
\[
\lambda_1 - (-2) = 1 \Rightarrow \lambda_1 = -1.
\]
Check the ratio:
\[
2\lambda_1^* = 2(-1) = -2 = \lambda_2^*.
\]
Hence, $2\lambda_1^* = \lambda_2^*$.
Step 5: Conclusion.
The correct relationship between dual variables is $2\lambda_1^* = \lambda_2^*$.