Question:

Let \( \vec{a} \) be any vector such that \( |\vec{a}| = a \). The value of \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \] is:

Show Hint

Cross product magnitudes depend on sine of the angle between vectors.
Updated On: Feb 19, 2025
  • \( a^2 \)
  • \( 2a^2 \)
  • \( 3a^2 \)
  • \( 0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Recall the formula for cross product magnitudes
The magnitude of the cross product is: \[ |\vec{a} \times \hat{i}| = |\vec{a}||\hat{i}|\sin\theta. \]
Step 2: Evaluate each term
For \( \vec{a} \times \hat{i} \), \( \vec{a} \times \hat{j} \), and \( \vec{a} \times \hat{k} \), the contributions along two directions add up, giving: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2a^2. \]
Step 3: Verify the options
The correct result is \( 2a^2 \), matching option (B).
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions